Novel single-walled carbon nanotubes periodically embedded with four- and eight-membered rings
Xiao-Ning Wang, Jun-Zhe Lu, Heng-Jiang Zhu, Fang-Fang Li, Miao-Miao Ma, Gui-Ping Tan
Novel single-walled carbon nanotubes periodically embedded with four- and eight-membered rings
Based on experimental results, we obtain five types of single-walled carbon nanotube (SWNT) clusters with different chirality indices and diameters using density functional theory (DFT). We then obtain the corresponding SWNTs by using periodic boundary conditions. Studies of the stability and electronic properties show that the stability of the novel SWNTs is independent of the chirality index and relates only to the tube diameter; larger diameters correspond to more stable SWNTs. The electronic properties all show metallic characteristics independent of the chirality indices and tube diameters, thereby promoting the application of metallic-type SWNTs.
four- and eight-membered rings / novel SWNTs / stability / electronic properties
[1] |
S. I. Yengejeh, S. A. Kazemi, and A. Öchsner, Advances in mechanical analysis of structurally and atomically modified carbon nanotubes and degenerated nanostructures: A review, Compos. Part B Eng. 86, 95 (2016)
CrossRef
ADS
Google scholar
|
[2] |
Y. Cao, S. Cong, X. Cao, F. Wu, Q. Liu, M. R. Amer, and C. Zhou, Review of electronics based on singlewalled carbon nanotubes, Top. Curr. Chem. 375(5), 75 (2017)
CrossRef
ADS
Google scholar
|
[3] |
F. Yang, X. Wang, D. Zhang, J. Yang, D. Luo, Z. Xu, J. Wei, J. Q. Wang, Z. Xu, F. Peng, X. Li, R. Li, Y. Li, M. Li, X. Bai, F. Ding, and Y. Li, Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts, Nature 510(7506), 522 (2014)
CrossRef
ADS
Google scholar
|
[4] |
Y. Tang, J. Lu, D. Liu, X. Yan, C. Yao, and H. Zhu, Structural derivative and electronic property of armchair carbon nanotubes from carbon clusters, Journal of Nanomaterials2017 (2017)
CrossRef
ADS
Google scholar
|
[5] |
J. Liu, J. Lu, X. Lin, Y. Tang, Y. Liu, T. Wang, and H. Zhu, The electronic properties of chiral carbon nanotubes, Comput. Mater. Sci. 129, 290 (2017)
CrossRef
ADS
Google scholar
|
[6] |
Y. N. Liu, J. Z. Lu, H. J. Zhu, Y. C. Tang, X. Lin, J. Liu, and T. Wang, Derivative and electronic properties of zigzag carbon nanotubes, Acta Physica Sinica 66(9), 093601 (2017)
|
[7] |
S. Liu and X. Guo, Functional single-walled carbon nanotube-based molecular devices, Acta Chimi. Sin. 71(04), 478 (2013)
CrossRef
ADS
Google scholar
|
[8] |
I. V. Zaporotskova, N. P. Boroznina, Y. N. Parkhomenko, and L. V. Kozhitov, Carbon nanotubes: Sensor properties, a review, Modern Electronic Materials 2(4), 95 (2016)
CrossRef
ADS
Google scholar
|
[9] |
M. Sheikhpour, A. Golbabaie, and A. Kasaeian, Carbon nanotubes: A review of novel strategies for cancer diagnosis and treatment, Mater. Sci. Eng. C 76(November), 1289 (2017)
CrossRef
ADS
Google scholar
|
[10] |
M. V. Chernysheva, E. A. Kiseleva, N. I. Verbitskii, A. A. Eliseev, A. V. Lukashin, Y. D. Tretyakov, S. V. Savilov, N. A. Kiselev, O. M. Zhigalina, A. S. Kumskov, A. V. Krestinin, and J. L. Hutchison, The electronic properties of SWNTs intercalated by electron acceptors, Physica E 40(7), 2283 (2008)
CrossRef
ADS
Google scholar
|
[11] |
T. Tanaka, H. Jin, Y. Miyata, and H. Kataura, Highyield separation of metallic and semiconducting singlewall carbon nanotubes by agarose gel electrophoresis, Appl. Phys. Express 1(11), 1140011 (2008)
|
[12] |
F. Zhang, P. X. Hou, C. Liu, B. W. Wang, H. Jiang, M. L. Chen, D. M. Sun, J. C. Li, H. T. Cong, E. I. Kauppinen, and H. M. Cheng, Growth of semiconducting single-wall carbon nanotubes with a narrow bandgap distribution, Nat. Commun. 7, 1 (2016)
|
[13] |
I. Yahya, F. Bonaccorso, S. K. Clowes, A. C. Ferrari, and S. R. P. Silva, Temperature dependent separation of metallic and semiconducting carbon nanotubes using gel agarose chromatography, Carbon 93, 574 (2015)
CrossRef
ADS
Google scholar
|
[14] |
H. Liu, Y. Feng, T. Tanaka, Y. Urabe, and H. Kataura, Diameter-selective metal/semiconductor separation of single-wall carbon nanotubes by agarose gel,J. Phys. Chem. C 114(20), 9270 (2010)
CrossRef
ADS
Google scholar
|
[15] |
F. Yang, X. Wang, D. Zhang, K. Qi, J. Yang, Z. Xu, M. Li, X. Zhao, X. Bai, and Y. Li, Growing zigzag (16, 0) carbon nanotubes with structure-defined catalysts, J. Am. Chem. Soc. 137(27), 8688 (2015)
CrossRef
ADS
Google scholar
|
[16] |
F. Yang, X. Wang, M. Li, X. Liu, X. Zhao, D. Zhang, Y. Zhang, J. Yang, and Y. Li, Templated synthesis of single-walled carbon nanotubes with specific structure, Acc. Chem. Res. 49(4), 606 (2016)
CrossRef
ADS
Google scholar
|
[17] |
H. Terrones, M. Terrones, E. Hernández, N. Grobert, J. C. Charlier, and P. M. Ajayan, New metallic allotropes of planar and tubular carbon, Phys. Rev. Lett. 84(8), 1716 (2000)
CrossRef
ADS
Google scholar
|
[18] |
L. P. Biró, G. I. Márk, Z. E. Horváth, K. Kertész, J. Gyulai, J. B. Nagy, and P. Lambin, Carbon nanoarchitectures containing non-hexagonal rings: “necklaces of pearls, Carbon 42(12–13), 2561 (2004)
CrossRef
ADS
Google scholar
|
[19] |
S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, and P. Jena, Penta-graphene: A new carbon allotrope, Proc. Natl. Acad. Sci. USA 112(8), 2372 (2015)
CrossRef
ADS
Google scholar
|
[20] |
C. Liu and H. M. Cheng, Controlled growth of semiconducting and metallic single-wall carbon nanotubes, J. Am. Chem. Soc. 138(21), 6690 (2016)
CrossRef
ADS
Google scholar
|
[21] |
G. Algara-Siller, A. Santana, R. Onions, M. Suyetin, J. Biskupek, E. Bichoutskaia, and U. Kaiser, Electronbeam engineering of single-walled carbon nanotubes from bilayer graphene, Carbon 65, 80 (2013)
CrossRef
ADS
Google scholar
|
[22] |
T. Xu, Y. Zhou, X. Tan, K. Yin, L. He, F. Banhart, and L. Sun, Creating the smallest BN nanotube from bilayer H-BN, Adv. Funct. Mater. 27(19), 1603897 (2017)
CrossRef
ADS
Google scholar
|
[23] |
M. Liu, M. Liu, L. She, Z. Zha, J. Pan, S. Li, T. Li, Y. He, Z. Cai, J. Wang, Y. Zheng, X. Qiu, and D. Zhong, Graphene-like nanoribbons periodically embedded with four- and eight-membered rings, Nat. Commun. 8, 1 (2017)
CrossRef
ADS
Google scholar
|
[24] |
Y. L. Wang, K. H. Su, and J. P. Zhang, Studying of B, N, S, Si and P Doped (5; 5) carbon nanotubes by the density functional theory, Adv. Mat. Res.463–464, 1488 (2012)
CrossRef
ADS
Google scholar
|
[25] |
C. Garau, A. Frontera, D. Quiñonero, A. Costa, P. Ballester, and P. M. Deyà, Structural and energetic features of single-walled carbon nanotube junctions: A theoretical ab initio study, Chem. Phys. 303(3), 265 (2004)
CrossRef
ADS
Google scholar
|
[26] |
J. Bai, X. C. Zeng, H. Tanaka, and J. Y. Zeng, Metallic single-walled silicon nanotubes, Proc. Natl. Acad. Sci. USA 101(9), 2664 (2004)
CrossRef
ADS
Google scholar
|
[27] |
L. Guo, X. Zheng, C. Liu, W. Zhou, and Z. Zeng, An ab initio study of cluster-assembled hydrogenated silicon nanotubes, Comput. Theor. Chem. 982, 17 (2012)
CrossRef
ADS
Google scholar
|
[28] |
M. S. Alam, F. Muttaqien, A. Setiadi, and M. Saito, First-principles calculations of hydrogen monomers and dimers adsorbed in graphene and carbon nanotubes, J. Phys. Soc. Jpn. 82(4), 1 (2013)
|
[29] |
L. Qi, J. Y. Huang, J. Feng, and J. Li, In situ observations of the nucleation and growth of atomically sharp graphene bilayer edges, Carbon 48(8), 2354 (2010)
CrossRef
ADS
Google scholar
|
[30] |
J. Y. Huang, F. Ding, B. I. Yakobson, P. Lu, L. Qi, and J. Li, In situ observation of graphene sublimation and multi-layer edge reconstructions, Proc. Natl. Acad. Sci. USA 106(25), 10103 (2009)
CrossRef
ADS
Google scholar
|
[31] |
D. W. Boukhvalov and M. I. Katsnelson, Chemical functionalization of graphene, J. Phys.: Condens. Matter 21(34), 344205 (2009)
CrossRef
ADS
Google scholar
|
[32] |
A. R. Botello-Méndez, E. Cruz-Silva, F. López-Urías, B. G. Sumpter, V. Meunier, M. Terrones, and H. Terrones, Spin polarized conductance in hybrid graphene nanoribbons using 5–7 defects, ACS Nano 3(11), 3606 (2009)
CrossRef
ADS
Google scholar
|
[33] |
Q. Q. Dai, Y. F. Zhu, and Q. Jiang, Electronic and magnetic engineering in zigzag graphene nanoribbons having a topological line defect at different positions with or without strain, J. Phys. Chem. C 117(9), 4791 (2013)
CrossRef
ADS
Google scholar
|
[34] |
X. Peng and R. Ahuja, Symmetry breaking induced bandgap in epitaxial graphene layers on SiC, Nano Lett. 8(12), 4464 (2008)
CrossRef
ADS
Google scholar
|
[35] |
S. Reich, L. Li, and J. Robertson, Structure and formation energy of carbon nanotube caps, Phys. Rev. B 72(16), 1654231 (2005)
CrossRef
ADS
Google scholar
|
[36] |
S. Singh and A. H. Romero, Giant tunable rashba spin splitting in a two-dimensional BiSb monolayer and in BiSb/AlN heterostructures, Phys. Rev. B 95(16), 165444 (2017)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |