First-principles calculations of nitrogen-doped antimony triselenide: A prospective material for solar cells and infrared optoelectronic devices
Sajid-ur- Rehman, Faheem K. Butt, Chuanbo Li, Bakhtiar Ul Haq, Zeeshan Tariq, F. Aleem
First-principles calculations of nitrogen-doped antimony triselenide: A prospective material for solar cells and infrared optoelectronic devices
This study is focused on calculation of the electronic structure and optical properties of non-metal doped Sb2Se3 using the first-principles method. One and two N atoms are introduced to Sb and Se sites in a Sb2Se3 crystal. When one and two N atoms are introduced into the Sb2Se3 lattice at Sb sites, the electronic structure shows that the doping significantly modifies the bandgap of Sb2Se3 from 1.11 eV to 0.787 and 0.685 eV, respectively. When N atoms are introduced to Se sites, the material shows a metallic behavior. The static dielectric constants ε1(0) for Sb16Se24, Sb15N1Se24, Sb14N2Se24, Sb16Se23N1, and Sb16Se22N2 are 14.84, 15.54, 15.02, 18.9, and 39.29, respectively. The calculated values of the refractive index n(0) for Sb16Se24, Sb15N1Se24, Sb14N2Se24, Sb16Se23N1, and Sb16Se22N2 are 3.83, 3.92, 3.86, 4.33, and 6.21, respectively. The optical absorbance and optical conductivity curves of the crystal for N-doping at Sb sites show a significant redshift towards the short-wave infrared spectral region as compared to N-doping at Se sites. The modulation of the static refractive index and static dielectric constant is mainly dependent on the doping level. The optical properties and bandgap narrowing effect suggest that the N-doped Sb2Se3is a promising new semiconductor and can be a replacement for GaSb due to its very similar bandgap and low cost.
Sb2Se3 / infrared / optical properties / solar cells / optoelectronic devices
[1] |
L. Etgar, Semiconductor nanocrystals as light harvesters in solar cells, Materials 6(2), 445 (2013)
CrossRef
ADS
Google scholar
|
[2] |
D. Choi, Y. Jang, J. Lee, G. H. Jeong, D. Whang, S. W. Hwang, K. S. Cho, and S. W. Kim, Diameter-controlled and surface-modified Sb2Se3 nanowires and their photodetector performance, Sci. Rep. 4, 6714, (2014)
CrossRef
ADS
Google scholar
|
[3] |
E. El-Sayad, A. Moustafa, and S. Marzouk, Effect of heat treatment on the structural and optical properties of amorphous Sb2Se3 and Sb2Se2S thin films, Physica B 404(8–11), 1119 (2009)
CrossRef
ADS
Google scholar
|
[4] |
H. Koc, A. M. Mamedov, E. Deligoz, and H. Ozisik, First principles prediction of the elastic, electronic, and optical properties of Sb2S3 and Sb2Se3 compounds, Solid State Sci. 14(8), 1211 (2012)
CrossRef
ADS
Google scholar
|
[5] |
O. Madelung, Semiconductors: Group IV Elements and III-V Compounds, Springer Science & Business Media, 2012
|
[6] |
I. H. Kim, (Bi, Sb)2(Te, Se)3-based thin film thermoelectric generators, Mater. Lett. 43(5), 221 (2000)
CrossRef
ADS
Google scholar
|
[7] |
J. Ma, Y. Wang, Y. Wang, Q. Chen, J. Lian, and W. Zheng, Controlled synthesis of one-dimensional Sb2Se3 nanostructures and their electrochemical properties, J. Phys. Chem. C 113(31), 13588 (2009)
CrossRef
ADS
Google scholar
|
[8] |
Y. Zhou, L. Wang, S. Chen, S. Qin, X. Liu, J. Chen, D. J. Xue, M. Luo, Y. Cao, Y. Cheng, E. H. Sargent, and J. Tang, Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries, Nat. Photonics 9(6), 409 (2015)
CrossRef
ADS
Google scholar
|
[9] |
J. Black, E. Conwell, L. Seigle, and C. Spencer, Electrical and optical properties of some M2v−B N 3VI−B semiconductors, J. Phys. Chem. Solids 2(3), 240 (1957)
CrossRef
ADS
Google scholar
|
[10] |
P. Arun, A. Vedeshwar, and N. Mehra, Laser-induced crystallization in amorphous films of (C= S, Se, Te), potential optical storage media, J. Phys. D 32(3), 183 (1999)
CrossRef
ADS
Google scholar
|
[11] |
K. Rajpure, C. Lokhande, and C. Bhosale, Effect of the substrate temperature on the properties of spray deposited Sb–Se thin films from non-aqueous medium, Thin Solid Films 311(1–2), 114 (1997)
CrossRef
ADS
Google scholar
|
[12] |
N. Platakis and H. Gatos, Threshold and memory switching in crystalline chalcogenide materials, Phys. Status Solidi (a) 13(1), K1 (1972)
CrossRef
ADS
Google scholar
|
[13] |
P. M. Fourspring, D. M. DePoy, J. E. Jr Rahmlow, Lazo-Wasem, and E. J. Gratrix, Optical coatings for thermophotovoltaic spectral control, Appl. Opt. 45(7), 1356 (2006)
CrossRef
ADS
Google scholar
|
[14] |
X. Liu, J. Chen, M. Luo, M. Leng, Z. Xia, Y. Zhou, S. Qin, D. J. Xue, L. Lv, H. Huang, D. Niu, and J. Tang, Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells, ACS Appl. Mater. Interfaces 6(13), 10687 (2014)
CrossRef
ADS
Google scholar
|
[15] |
B. Zhou and J. J. Zhu, Microwave-assisted synthesis of Sb2Se3 submicron rods, compared with those of Bi2Te3 and Sb2Te3, Nanotechnology 20(8), 085604 (2009)
CrossRef
ADS
Google scholar
|
[16] |
M. R. Filip, C. E. Patrick, and F. Giustino, GW quasiparticle band structures of stibnite, antimonselite, bismuthinite, and guanajuatite, Phys. Rev. B 87(20), 205125 (2013)
CrossRef
ADS
Google scholar
|
[17] |
C. E. Patrick and F. Giustino, Structural and electronic properties of semiconductor-sensitized solar-cell interfaces,Adv. Funct. Mater. 21(24), 4663 (2011)
CrossRef
ADS
Google scholar
|
[18] |
R. Vadapoo, S. Krishnan, H. Yilmaz, and C. Marin, Electronic structure of antimony selenide (Sb2Se3) from GW calculations, Phys. Status Solidi B Basic Res. 248(3), 700 (2011)
CrossRef
ADS
Google scholar
|
[19] |
W. Procarione and C. Wood, The optical properties of Sb2Se3-Sb2Te3, Phys. Status Solidi B 42(2), 871 (1970)
CrossRef
ADS
Google scholar
|
[20] |
F. Kosek, J. Tulka, and L. Štourač, Optical, photoelectric and electric properties of single-crystalline Sb2Se3, Czechoslovak J. Phys. B 28(3), 325 (1978)
CrossRef
ADS
Google scholar
|
[21] |
L. Gilbert, B. Van Pelt, and C. Wood, The thermal activation energy of crystalline Sb2Se3, J. Phys. Chem. Solids 35(12), 1629 (1974)
CrossRef
ADS
Google scholar
|
[22] |
S. Messina, M. Nair, and P. Nair, Solar cells with Sb2S3 absorber films, Thin Solid Films 517(7), 2503 (2009)
CrossRef
ADS
Google scholar
|
[23] |
Z. S. Chu’Er Chng, M. Pumera, and A. Bonanni, Doped and undoped graphene platforms: The influence of structural properties on the detection of polyphenols, Sci. Rep. 6, 20673, (2016)
CrossRef
ADS
Google scholar
|
[24] |
K. Chandrasekharan and A. Kunjomana, Growth and microindentation analysis of pure and doped Sb2Se3 crystals, Turkish J. Phys. 33(4), 209 (2009)
|
[25] |
J. Choi, H. W. Lee, B. S. Kim, H. Park, S. Choi, S. Hong, and S. Cho, Magnetic and transport properties of Mn-doped Bi2Se3 and Sb2Se3, J. Magn. Magn. Mater. 304(1), e164 (2006)
CrossRef
ADS
Google scholar
|
[26] |
S. Gautam, A. Thakur, S. Tripathi, and N. Goyal, Effect of silver doping on the electrical properties of a-Sb2Se3, J. Non-Cryst. Solids 353(13–15), 1315 (2007)
CrossRef
ADS
Google scholar
|
[27] |
J. Li, B. Wang, F. Liu, J. Yang, J. Li, J. Liu, M. Jia, Y. Lai, and Y. Liu, Preparation and characterization of Bidoped antimony selenide thin films by electrodeposition, Electrochim. Acta 56(24), 8597 (2011)
CrossRef
ADS
Google scholar
|
[28] |
D. E. Reisner and T. Pradeep, Aquananotechnology: Global Prospects, CRC Press, 2014
|
[29] |
T. Duan, C. Liao, T. Chen, N. Yu, Y. Liu, H. Yin, Z. J. Xiong, and M. Q. Zhu, Single crystalline nitrogendoped InP nanowires for low-voltage field-effect transistors and photodetectors on rigid silicon and flexible mica substrates, Nano Energy 15, 293 (2015)
CrossRef
ADS
Google scholar
|
[30] |
P. Jadaun, H. P. Nair, V. Lordi, S. R. Bank, and S. K. Banerjee, Electronic and optical properties of GaSb:N from first principles, arXiv: 1308.0363 (2013)
|
[31] |
Y. Mi, S. Wang, J. Chai, J. Pan, C. Huan, Y. Feng, and C. Ong, Effect of nitrogen doping on optical properties and electronic structures of SrTiO3 films, App. Phys. Lett. 89(23), (2006)
|
[32] |
S. Qin, W. Lei, D. Liu, and Y. Chen, In-situ and tunable nitrogen-doping of MoS2 nanosheets, Sci. Rep. 4, 7582, (2014)
CrossRef
ADS
Google scholar
|
[33] |
H. Wang, T. Maiyalagan, and X. Wang, Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications, ACS Catal. 2(5), 781 (2012)
CrossRef
ADS
Google scholar
|
[34] |
X. Li, et al., Multifunctional single-phase photocatalysts: Extended near infrared photoactivity and reliable magnetic recyclability, Sci. Rep. 5, 15511, (2015)
CrossRef
ADS
Google scholar
|
[35] |
http://www.crystallography.net/cod/9007437.html
|
[36] |
N. Tideswell, F. Kruse, and J. McCullough, The crystal structure of antimony selenide, Sb2Se3, Acta Crystallogr. 10(2), 99 (1957)
CrossRef
ADS
Google scholar
|
[37] |
S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. Probert, K. Refson, and M. C. Payne, First principles methods using CASTEP, Z. Kristallogr. Cryst. Mater. 220(5/6), 567 (2005)
CrossRef
ADS
Google scholar
|
[38] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[39] |
N. Kuganathan, Antimony selenide crystals encapsulated within single walled carbon nanotubes-A DFT study, J. Chem. 6(S1), S147 (2009)
CrossRef
ADS
Google scholar
|
[40] |
W. Li, X. Y. Wei, J. X. Zhu, C. Ting, and Y. Chen, Pressure-induced topological quantum phase transition in Sb2Se3, Phys. Rev. B 89(3), 035101 (2014)
CrossRef
ADS
Google scholar
|
[41] |
W. Liu, X. Peng, C. Tang, L. Sun, K. Zhang, and J. Zhong, Anisotropic interactions and strain-induced topological phase transition in Sb2Se3 and Bi2Se3, Phys. Rev. B 84(24), 245105 (2011)
CrossRef
ADS
Google scholar
|
[42] |
R. Vadapoo, S. Krishnan, H. Yilmaz, and C. Marin, Self-standing nanoribbons of antimony selenide and antimony sulfide with well-defined size and band gap, Nanotechnology 22(17), 175705 (2011)
CrossRef
ADS
Google scholar
|
[43] |
Q. Zhang, Z. Zhang, Z. Zhu, U. Schwingenschlögl, and Y. Cui, Exotic topological insulator states and topological phase transitions in Sb2Se3–Bi2Se3 heterostructures, ACS Nano 6(3), 2345 (2012)
CrossRef
ADS
Google scholar
|
[44] |
L. Hedin and B. I. Lundqvist, Explicit local exchangecorrelation potentials, J. Phys. C 4(14), 2064 (1971)
|
[45] |
B. Hammer, L. B. Hansen, and J. K. NΦrskov, Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals, Phys. Rev. B 59(11), 7413 (1999)
CrossRef
ADS
Google scholar
|
[46] |
J. P. Perdew, J. Chevary, S. Vosko, K. A. Jackson, M. R. Pederson, D. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46(11), 6671 (1992)
CrossRef
ADS
Google scholar
|
[47] |
J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100(13), 136406 (2008)
CrossRef
ADS
Google scholar
|
[48] |
V. L. Deringer, R. P. Stoffel, M. Wuttig, and R. Dronskowski, Vibrational properties and bonding nature of Sb2Se3 and their implications for chalcogenide materials, Chem. Sci. 6(9), 5255 (2015)
CrossRef
ADS
Google scholar
|
[49] |
C. Chen, D. C. Bobela, Y. Yang, S. Lu, K. Zeng, C. Ge, B. Yang, L. Gao, Y. Zhao, M. C. Beard, and J. Tang, Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics, Front. Optoelectron. 10(1), 18 (2017)
CrossRef
ADS
Google scholar
|
[50] |
C. Chen, W. Li, Y. Zhou, C. Chen, M. Luo, X. Liu, K. Zeng, B. Yang, C. Zhang, J. Han, and J. Tang, Optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation, Appl. Phys. Lett. 107(4), 043905 (2015)
CrossRef
ADS
Google scholar
|
[51] |
G. Y. Chen, B. Dneg, G. B. Cai, T. K. Zhang, W. F. Dong, W. X. Zhang, and A. W. Xu, The fractal splitting growth of Sb2S3 and Sb2Se3 hierarchical nanostructures, J. Phys. Chem. C 112(3), 672 (2008)
CrossRef
ADS
Google scholar
|
[52] |
P. J. Hasnip, K. Refson, M. I. Probert, J. R. Yates, S. J. Clark, and C. J. Pickard, Density functional theory in the solid state, Phil. Trans. R. Soc. A 372 (2011), 20130270 (2014)
|
[53] |
S. Xuechu, Semiconductor Spectra and Optical Properties, 2nd Ed., Beijing: Science Press, 1992
|
[54] |
Z. H. Levine and D. C. Allan, Linear optical response in silicon and germanium including self-energy effects, Phys. Rev. Lett. 63(16), 1719 (1989)
CrossRef
ADS
Google scholar
|
[55] |
K. C. Krogman, T. Druffel, and M. K. Sunkara, Antireflective optical coatings incorporating nanoparticles, Nanotechnology 16(7), S338 (2005)
CrossRef
ADS
Google scholar
|
[56] |
J. Liu and M. Ueda, High refractive index polymers: Fundamental research and practical applications, J. Mater. Chem. 19(47), 8907 (2009)
CrossRef
ADS
Google scholar
|
[57] |
M. Ma, F. W. Mont, D. J. Poxson, J. Cho, E. F. Schubert, R. E. Welser, and A. K. Sood, Enhancement of photovoltaic cell response due to high-refractive-index encapsulants, J. Appl. Phys. 108(4), 043102 (2010)
CrossRef
ADS
Google scholar
|
[58] |
F. W. Mont, J. K. Kim, M. F. Schubert, E. F. Schubert, and R. W. Siegel, High-refractiveindex TiO2-nanoparticle-loaded encapsulants for lightemitting diodes, J. Appl. Phys. 103(8), 083120 (2008)
CrossRef
ADS
Google scholar
|
[59] |
B. Ung, A. Dupuis, K. Stoeffler, C. Dubois, and M. Skorobogatiy, High-refractive-index composite materials for terahertz waveguides: Trade-off between index contrast and absorption loss, JOSA B 28(4), 917 (2011)
CrossRef
ADS
Google scholar
|
[60] |
H. Maghraoui-Meherzi, T. B. Nasr, N. Kamoun, and M. Dachraoui, Structural, morphology and optical properties of chemically deposited Sb2S3 thin films, Physica B 405(15), 3101 (2010)
CrossRef
ADS
Google scholar
|
[61] |
K. Aly, A. Abousehly, M. Osman, and A. Othman, Structure, optical and electrical properties of Ge30Sb10Se60 thin films, Physica B 403(10–11), 1848 (2008)
CrossRef
ADS
Google scholar
|
[62] |
D. Harea, M. Iovu, O. Iaseniuc, E. Colomeico, A. Meshalkin, and M. Iovu, Modification of the optical constants in amorphous Sb2Se3:Sn thin films under the illumination and heat treatment, J. Optoelectron. Adv. Mater. 11(12), 2039 (2009)
|
[63] |
C. Zhang, Y. Jia, Y. Jing, Y. Yao, J. Ma, and J. Sun, DFT study on electronic structure and optical properties of N-doped, S-doped, and N/S co-doped SrTiO3, Physica B 407(24), 4649 (2012)
CrossRef
ADS
Google scholar
|
[64] |
A. SAEED, Ag3SbS3 and Sb2Se3 crystal as potential absorbers for photovoltaic application: DFT study mohammed lawal, ahmad radzi mat isah and muhammad, Proceeding of 2nd International Science Postgraduate Conference 2014 (ISPC2014)© Faculty of Science, Universiti Teknologi Malaysia
|
/
〈 | 〉 |