First-principles calculations of nitrogen-doped antimony triselenide: A prospective material for solar cells and infrared optoelectronic devices

Sajid-ur- Rehman, Faheem K. Butt, Chuanbo Li, Bakhtiar Ul Haq, Zeeshan Tariq, F. Aleem

PDF(3534 KB)
PDF(3534 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (3) : 137805. DOI: 10.1007/s11467-018-0790-2
RESEARCH ARTICLE
RESEARCH ARTICLE

First-principles calculations of nitrogen-doped antimony triselenide: A prospective material for solar cells and infrared optoelectronic devices

Author information +
History +

Abstract

This study is focused on calculation of the electronic structure and optical properties of non-metal doped Sb2Se3 using the first-principles method. One and two N atoms are introduced to Sb and Se sites in a Sb2Se3 crystal. When one and two N atoms are introduced into the Sb2Se3 lattice at Sb sites, the electronic structure shows that the doping significantly modifies the bandgap of Sb2Se3 from 1.11 eV to 0.787 and 0.685 eV, respectively. When N atoms are introduced to Se sites, the material shows a metallic behavior. The static dielectric constants ε1(0) for Sb16Se24, Sb15N1Se24, Sb14N2Se24, Sb16Se23N1, and Sb16Se22N2 are 14.84, 15.54, 15.02, 18.9, and 39.29, respectively. The calculated values of the refractive index n(0) for Sb16Se24, Sb15N1Se24, Sb14N2Se24, Sb16Se23N1, and Sb16Se22N2 are 3.83, 3.92, 3.86, 4.33, and 6.21, respectively. The optical absorbance and optical conductivity curves of the crystal for N-doping at Sb sites show a significant redshift towards the short-wave infrared spectral region as compared to N-doping at Se sites. The modulation of the static refractive index and static dielectric constant is mainly dependent on the doping level. The optical properties and bandgap narrowing effect suggest that the N-doped Sb2Se3is a promising new semiconductor and can be a replacement for GaSb due to its very similar bandgap and low cost.

Keywords

Sb2Se3 / infrared / optical properties / solar cells / optoelectronic devices

Cite this article

Download citation ▾
Sajid-ur- Rehman, Faheem K. Butt, Chuanbo Li, Bakhtiar Ul Haq, Zeeshan Tariq, F. Aleem. First-principles calculations of nitrogen-doped antimony triselenide: A prospective material for solar cells and infrared optoelectronic devices. Front. Phys., 2018, 13(3): 137805 https://doi.org/10.1007/s11467-018-0790-2

References

[1]
L. Etgar, Semiconductor nanocrystals as light harvesters in solar cells, Materials 6(2), 445 (2013)
CrossRef ADS Google scholar
[2]
D. Choi, Y. Jang, J. Lee, G. H. Jeong, D. Whang, S. W. Hwang, K. S. Cho, and S. W. Kim, Diameter-controlled and surface-modified Sb2Se3 nanowires and their photodetector performance, Sci. Rep. 4, 6714, (2014)
CrossRef ADS Google scholar
[3]
E. El-Sayad, A. Moustafa, and S. Marzouk, Effect of heat treatment on the structural and optical properties of amorphous Sb2Se3 and Sb2Se2S thin films, Physica B 404(8–11), 1119 (2009)
CrossRef ADS Google scholar
[4]
H. Koc, A. M. Mamedov, E. Deligoz, and H. Ozisik, First principles prediction of the elastic, electronic, and optical properties of Sb2S3 and Sb2Se3 compounds, Solid State Sci. 14(8), 1211 (2012)
CrossRef ADS Google scholar
[5]
O. Madelung, Semiconductors: Group IV Elements and III-V Compounds, Springer Science & Business Media, 2012
[6]
I. H. Kim, (Bi, Sb)2(Te, Se)3-based thin film thermoelectric generators, Mater. Lett. 43(5), 221 (2000)
CrossRef ADS Google scholar
[7]
J. Ma, Y. Wang, Y. Wang, Q. Chen, J. Lian, and W. Zheng, Controlled synthesis of one-dimensional Sb2Se3 nanostructures and their electrochemical properties, J. Phys. Chem. C 113(31), 13588 (2009)
CrossRef ADS Google scholar
[8]
Y. Zhou, L. Wang, S. Chen, S. Qin, X. Liu, J. Chen, D. J. Xue, M. Luo, Y. Cao, Y. Cheng, E. H. Sargent, and J. Tang, Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries, Nat. Photonics 9(6), 409 (2015)
CrossRef ADS Google scholar
[9]
J. Black, E. Conwell, L. Seigle, and C. Spencer, Electrical and optical properties of some M2v−B N 3VI−B semiconductors, J. Phys. Chem. Solids 2(3), 240 (1957)
CrossRef ADS Google scholar
[10]
P. Arun, A. Vedeshwar, and N. Mehra, Laser-induced crystallization in amorphous films of (C= S, Se, Te), potential optical storage media, J. Phys. D 32(3), 183 (1999)
CrossRef ADS Google scholar
[11]
K. Rajpure, C. Lokhande, and C. Bhosale, Effect of the substrate temperature on the properties of spray deposited Sb–Se thin films from non-aqueous medium, Thin Solid Films 311(1–2), 114 (1997)
CrossRef ADS Google scholar
[12]
N. Platakis and H. Gatos, Threshold and memory switching in crystalline chalcogenide materials, Phys. Status Solidi (a) 13(1), K1 (1972)
CrossRef ADS Google scholar
[13]
P. M. Fourspring, D. M. DePoy, J. E. Jr Rahmlow, Lazo-Wasem, and E. J. Gratrix, Optical coatings for thermophotovoltaic spectral control, Appl. Opt. 45(7), 1356 (2006)
CrossRef ADS Google scholar
[14]
X. Liu, J. Chen, M. Luo, M. Leng, Z. Xia, Y. Zhou, S. Qin, D. J. Xue, L. Lv, H. Huang, D. Niu, and J. Tang, Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells, ACS Appl. Mater. Interfaces 6(13), 10687 (2014)
CrossRef ADS Google scholar
[15]
B. Zhou and J. J. Zhu, Microwave-assisted synthesis of Sb2Se3 submicron rods, compared with those of Bi2Te3 and Sb2Te3, Nanotechnology 20(8), 085604 (2009)
CrossRef ADS Google scholar
[16]
M. R. Filip, C. E. Patrick, and F. Giustino, GW quasiparticle band structures of stibnite, antimonselite, bismuthinite, and guanajuatite, Phys. Rev. B 87(20), 205125 (2013)
CrossRef ADS Google scholar
[17]
C. E. Patrick and F. Giustino, Structural and electronic properties of semiconductor-sensitized solar-cell interfaces,Adv. Funct. Mater. 21(24), 4663 (2011)
CrossRef ADS Google scholar
[18]
R. Vadapoo, S. Krishnan, H. Yilmaz, and C. Marin, Electronic structure of antimony selenide (Sb2Se3) from GW calculations, Phys. Status Solidi B Basic Res. 248(3), 700 (2011)
CrossRef ADS Google scholar
[19]
W. Procarione and C. Wood, The optical properties of Sb2Se3-Sb2Te3, Phys. Status Solidi B 42(2), 871 (1970)
CrossRef ADS Google scholar
[20]
F. Kosek, J. Tulka, and L. Štourač, Optical, photoelectric and electric properties of single-crystalline Sb2Se3, Czechoslovak J. Phys. B 28(3), 325 (1978)
CrossRef ADS Google scholar
[21]
L. Gilbert, B. Van Pelt, and C. Wood, The thermal activation energy of crystalline Sb2Se3, J. Phys. Chem. Solids 35(12), 1629 (1974)
CrossRef ADS Google scholar
[22]
S. Messina, M. Nair, and P. Nair, Solar cells with Sb2S3 absorber films, Thin Solid Films 517(7), 2503 (2009)
CrossRef ADS Google scholar
[23]
Z. S. Chu’Er Chng, M. Pumera, and A. Bonanni, Doped and undoped graphene platforms: The influence of structural properties on the detection of polyphenols, Sci. Rep. 6, 20673, (2016)
CrossRef ADS Google scholar
[24]
K. Chandrasekharan and A. Kunjomana, Growth and microindentation analysis of pure and doped Sb2Se3 crystals, Turkish J. Phys. 33(4), 209 (2009)
[25]
J. Choi, H. W. Lee, B. S. Kim, H. Park, S. Choi, S. Hong, and S. Cho, Magnetic and transport properties of Mn-doped Bi2Se3 and Sb2Se3, J. Magn. Magn. Mater. 304(1), e164 (2006)
CrossRef ADS Google scholar
[26]
S. Gautam, A. Thakur, S. Tripathi, and N. Goyal, Effect of silver doping on the electrical properties of a-Sb2Se3, J. Non-Cryst. Solids 353(13–15), 1315 (2007)
CrossRef ADS Google scholar
[27]
J. Li, B. Wang, F. Liu, J. Yang, J. Li, J. Liu, M. Jia, Y. Lai, and Y. Liu, Preparation and characterization of Bidoped antimony selenide thin films by electrodeposition, Electrochim. Acta 56(24), 8597 (2011)
CrossRef ADS Google scholar
[28]
D. E. Reisner and T. Pradeep, Aquananotechnology: Global Prospects, CRC Press, 2014
[29]
T. Duan, C. Liao, T. Chen, N. Yu, Y. Liu, H. Yin, Z. J. Xiong, and M. Q. Zhu, Single crystalline nitrogendoped InP nanowires for low-voltage field-effect transistors and photodetectors on rigid silicon and flexible mica substrates, Nano Energy 15, 293 (2015)
CrossRef ADS Google scholar
[30]
P. Jadaun, H. P. Nair, V. Lordi, S. R. Bank, and S. K. Banerjee, Electronic and optical properties of GaSb:N from first principles, arXiv: 1308.0363 (2013)
[31]
Y. Mi, S. Wang, J. Chai, J. Pan, C. Huan, Y. Feng, and C. Ong, Effect of nitrogen doping on optical properties and electronic structures of SrTiO3 films, App. Phys. Lett. 89(23), (2006)
[32]
S. Qin, W. Lei, D. Liu, and Y. Chen, In-situ and tunable nitrogen-doping of MoS2 nanosheets, Sci. Rep. 4, 7582, (2014)
CrossRef ADS Google scholar
[33]
H. Wang, T. Maiyalagan, and X. Wang, Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications, ACS Catal. 2(5), 781 (2012)
CrossRef ADS Google scholar
[34]
X. Li, et al., Multifunctional single-phase photocatalysts: Extended near infrared photoactivity and reliable magnetic recyclability, Sci. Rep. 5, 15511, (2015)
CrossRef ADS Google scholar
[35]
http://www.crystallography.net/cod/9007437.html
[36]
N. Tideswell, F. Kruse, and J. McCullough, The crystal structure of antimony selenide, Sb2Se3, Acta Crystallogr. 10(2), 99 (1957)
CrossRef ADS Google scholar
[37]
S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. Probert, K. Refson, and M. C. Payne, First principles methods using CASTEP, Z. Kristallogr. Cryst. Mater. 220(5/6), 567 (2005)
CrossRef ADS Google scholar
[38]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[39]
N. Kuganathan, Antimony selenide crystals encapsulated within single walled carbon nanotubes-A DFT study, J. Chem. 6(S1), S147 (2009)
CrossRef ADS Google scholar
[40]
W. Li, X. Y. Wei, J. X. Zhu, C. Ting, and Y. Chen, Pressure-induced topological quantum phase transition in Sb2Se3, Phys. Rev. B 89(3), 035101 (2014)
CrossRef ADS Google scholar
[41]
W. Liu, X. Peng, C. Tang, L. Sun, K. Zhang, and J. Zhong, Anisotropic interactions and strain-induced topological phase transition in Sb2Se3 and Bi2Se3, Phys. Rev. B 84(24), 245105 (2011)
CrossRef ADS Google scholar
[42]
R. Vadapoo, S. Krishnan, H. Yilmaz, and C. Marin, Self-standing nanoribbons of antimony selenide and antimony sulfide with well-defined size and band gap, Nanotechnology 22(17), 175705 (2011)
CrossRef ADS Google scholar
[43]
Q. Zhang, Z. Zhang, Z. Zhu, U. Schwingenschlögl, and Y. Cui, Exotic topological insulator states and topological phase transitions in Sb2Se3–Bi2Se3 heterostructures, ACS Nano 6(3), 2345 (2012)
CrossRef ADS Google scholar
[44]
L. Hedin and B. I. Lundqvist, Explicit local exchangecorrelation potentials, J. Phys. C 4(14), 2064 (1971)
[45]
B. Hammer, L. B. Hansen, and J. K. NΦrskov, Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals, Phys. Rev. B 59(11), 7413 (1999)
CrossRef ADS Google scholar
[46]
J. P. Perdew, J. Chevary, S. Vosko, K. A. Jackson, M. R. Pederson, D. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46(11), 6671 (1992)
CrossRef ADS Google scholar
[47]
J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100(13), 136406 (2008)
CrossRef ADS Google scholar
[48]
V. L. Deringer, R. P. Stoffel, M. Wuttig, and R. Dronskowski, Vibrational properties and bonding nature of Sb2Se3 and their implications for chalcogenide materials, Chem. Sci. 6(9), 5255 (2015)
CrossRef ADS Google scholar
[49]
C. Chen, D. C. Bobela, Y. Yang, S. Lu, K. Zeng, C. Ge, B. Yang, L. Gao, Y. Zhao, M. C. Beard, and J. Tang, Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics, Front. Optoelectron. 10(1), 18 (2017)
CrossRef ADS Google scholar
[50]
C. Chen, W. Li, Y. Zhou, C. Chen, M. Luo, X. Liu, K. Zeng, B. Yang, C. Zhang, J. Han, and J. Tang, Optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation, Appl. Phys. Lett. 107(4), 043905 (2015)
CrossRef ADS Google scholar
[51]
G. Y. Chen, B. Dneg, G. B. Cai, T. K. Zhang, W. F. Dong, W. X. Zhang, and A. W. Xu, The fractal splitting growth of Sb2S3 and Sb2Se3 hierarchical nanostructures, J. Phys. Chem. C 112(3), 672 (2008)
CrossRef ADS Google scholar
[52]
P. J. Hasnip, K. Refson, M. I. Probert, J. R. Yates, S. J. Clark, and C. J. Pickard, Density functional theory in the solid state, Phil. Trans. R. Soc. A 372 (2011), 20130270 (2014)
[53]
S. Xuechu, Semiconductor Spectra and Optical Properties, 2nd Ed., Beijing: Science Press, 1992
[54]
Z. H. Levine and D. C. Allan, Linear optical response in silicon and germanium including self-energy effects, Phys. Rev. Lett. 63(16), 1719 (1989)
CrossRef ADS Google scholar
[55]
K. C. Krogman, T. Druffel, and M. K. Sunkara, Antireflective optical coatings incorporating nanoparticles, Nanotechnology 16(7), S338 (2005)
CrossRef ADS Google scholar
[56]
J. Liu and M. Ueda, High refractive index polymers: Fundamental research and practical applications, J. Mater. Chem. 19(47), 8907 (2009)
CrossRef ADS Google scholar
[57]
M. Ma, F. W. Mont, D. J. Poxson, J. Cho, E. F. Schubert, R. E. Welser, and A. K. Sood, Enhancement of photovoltaic cell response due to high-refractive-index encapsulants, J. Appl. Phys. 108(4), 043102 (2010)
CrossRef ADS Google scholar
[58]
F. W. Mont, J. K. Kim, M. F. Schubert, E. F. Schubert, and R. W. Siegel, High-refractiveindex TiO2-nanoparticle-loaded encapsulants for lightemitting diodes, J. Appl. Phys. 103(8), 083120 (2008)
CrossRef ADS Google scholar
[59]
B. Ung, A. Dupuis, K. Stoeffler, C. Dubois, and M. Skorobogatiy, High-refractive-index composite materials for terahertz waveguides: Trade-off between index contrast and absorption loss, JOSA B 28(4), 917 (2011)
CrossRef ADS Google scholar
[60]
H. Maghraoui-Meherzi, T. B. Nasr, N. Kamoun, and M. Dachraoui, Structural, morphology and optical properties of chemically deposited Sb2S3 thin films, Physica B 405(15), 3101 (2010)
CrossRef ADS Google scholar
[61]
K. Aly, A. Abousehly, M. Osman, and A. Othman, Structure, optical and electrical properties of Ge30Sb10Se60 thin films, Physica B 403(10–11), 1848 (2008)
CrossRef ADS Google scholar
[62]
D. Harea, M. Iovu, O. Iaseniuc, E. Colomeico, A. Meshalkin, and M. Iovu, Modification of the optical constants in amorphous Sb2Se3:Sn thin films under the illumination and heat treatment, J. Optoelectron. Adv. Mater. 11(12), 2039 (2009)
[63]
C. Zhang, Y. Jia, Y. Jing, Y. Yao, J. Ma, and J. Sun, DFT study on electronic structure and optical properties of N-doped, S-doped, and N/S co-doped SrTiO3, Physica B 407(24), 4649 (2012)
CrossRef ADS Google scholar
[64]
A. SAEED, Ag3SbS3 and Sb2Se3 crystal as potential absorbers for photovoltaic application: DFT study mohammed lawal, ahmad radzi mat isah and muhammad, Proceeding of 2nd International Science Postgraduate Conference 2014 (ISPC2014)© Faculty of Science, Universiti Teknologi Malaysia

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(3534 KB)

Accesses

Citations

Detail

Sections
Recommended

/