Black ring entropy from the Weyl tensor

Ze-Wei Zhao, Chun-Kai Yu, Nan Li

PDF(178 KB)
PDF(178 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 130401. DOI: 10.1007/s11467-018-0789-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Black ring entropy from the Weyl tensor

Author information +
History +

Abstract

A black ring is an asymptotically flat vacuum solution of the n-dimensional Einstein equations with an event horizon of topology S1×Sn−3. In this study, a connection between the black ring entropy and the Weyl tensor Cμνλρ is explored by interpreting the Weyl scalar invariant CμνλρCμνλρ as the entropy density in five-dimensional space-time. It is shown that the proper volume integral of CμνλρCμνλρ for a neutral black ring is proportional to the black ring entropy in the thin-ring limit. Similar calculations are extended to more general cases: a black string, a black ring with two angular momenta, and a black ring with a cosmological constant. The proportionality is also found to be valid for these complex black objects at the leading order.

Keywords

black ring / Weyl tensor / entropy / Penrose conjecture

Cite this article

Download citation ▾
Ze-Wei Zhao, Chun-Kai Yu, Nan Li. Black ring entropy from the Weyl tensor. Front. Phys., 2018, 13(5): 130401 https://doi.org/10.1007/s11467-018-0789-8

References

[1]
R. Penrose, General Relativity, an Einstein Centenary Survey, Cambridge: Cambridge University Press, 1979
[2]
J. Wainwright, Power law singularities in orthogonal spatially homogeneous cosmologies, Gen. Relativ. Gravit. 16(7), 657 (1984)
CrossRef ADS Google scholar
[3]
S. W. Goode and J. Wainwright, Isotropic singularities in cosmological models, Class. Quantum Gravity 2(1), 99 (1985)
CrossRef ADS Google scholar
[4]
W. B. Bonnor, The gravitational arrow of time and the Szekeres cosmological models, Class. Quantum Gravity 3(4), 495 (1986)
CrossRef ADS Google scholar
[5]
W. B. Bonnor, Arrow of time for a collapsing, radiating sphere, Phys. Lett. A 122(6–7), 305 (1987)
CrossRef ADS Google scholar
[6]
V. Husain, Weyl tensor and gravitational entropy, Phys. Rev. D 38(10), 3314 (1988)
CrossRef ADS Google scholar
[7]
S. W. Goode, Isotropic singularities and the Penrose-Weyl tensor hypothesis, Class. Quantum Gravity 8(1), L1 (1991)
CrossRef ADS Google scholar
[8]
S. W. Goode, A. A. Coley, and J. Wainwright, The isotropic singularity in cosmology, Class. Quantum Gravity 9(2), 445 (1992)
CrossRef ADS Google scholar
[9]
R. P. A. C. Newman, On the structure of conformal singularities in classical general relativity, Proc. R. Soc. A 443(1919), 473 (1993)
[10]
S. A. Hayward, On cosmological isotropy, quantum cosmology and the Weyl curvature hypothesis, Class. Quantum Gravity 10(1), L7 (1993)
CrossRef ADS Google scholar
[11]
A. V. Nesteruk, The Weyl curvature hypothesis and a choice of the initial vacuum for quantum fields at the cosmological singularity,Class. Quantum Gravity 11(1), L15 (1994)
CrossRef ADS Google scholar
[12]
T. Rothman and P. Anninos, Phase space approach to the gravitational arrow of time, Phys. Rev. D 55(4), 1948 (1997)
CrossRef ADS Google scholar
[13]
S. Barve and T. P. Singh, Naked singularities and the Weyl curvature hypothesis, arXiv: gr-qc/9705060 (1997)
[14]
N. Pelavas and K. Lake, Measures of gravitational entropy: Self-similar spacetimes, Phys. Rev. D 62(4), 044009 (2000)
CrossRef ADS Google scholar
[15]
Ø. Grøn and S. Hervik, The Weyl curvature conjecture, arXiv: gr-qc/0205026 (2002)
[16]
J. D. Barrow and S. Hervik, The Weyl tensor in spatially homogeneous cosmological models, Class. Quantum Gravity 19(20), 5173 (2002)
CrossRef ADS Google scholar
[17]
W. C. Lim, H. van Elst, C. Uggla, and J. Wainwright, Asymptotic isotropization in inhomogeneous cosmology, Phys. Rev. D 69(10), 103507 (2004)
CrossRef ADS Google scholar
[18]
Ø. Rudjord, Ø. Grøn, and S. Hervik, The Weyl curvature conjecture and black hole entropy, Phys. Scr. 77(5), 055901 (2008)
CrossRef ADS Google scholar
[19]
N. Li, T. Buchert, A. Hosoya, M. Morita, and D. J. Schwarz, Relative information entropy and Weyl curvature of the inhomogeneous universe, Phys. Rev. D 86(8), 083539 (2012)
CrossRef ADS Google scholar
[20]
O. C. Stoica, On the Weyl curvature hypothesis, Ann. Phys. 338, 186 (2013)
CrossRef ADS Google scholar
[21]
T. Maki and M. Morita, Weyl curvature hypothesis in terms of spacetime thermodynamics, in: Progress in Mathematical Relativity, Gravitation and Cosmology, Vol. 60 of Springer Proc. Math. Stat., 2014, p 311
CrossRef ADS Google scholar
[22]
N. Li, X. L. Li, and S. P. Song, Kullback-Leibler entropy and Penrose conjecture in the Lemaître–Tolman–Bondi model, Eur. Phys. J. C 75(3), 114 (2015)
CrossRef ADS Google scholar
[23]
G. Marozzi, J. P. Uzan, O. Umeh, and C. Clarkson, Cosmological evolution of the gravitational entropy of the large-scale structure, Gen. Relativ. Gravit. 47(10), 114 (2015)
CrossRef ADS Google scholar
[24]
E. Okon and D. Sudarsky, A (not so?) novel explanation for the very special initial state of the universe, Class. Quantum Gravity 33(22), 225015 (2016)
CrossRef ADS Google scholar
[25]
T. Clifton, G. F. R. Ellis, and R. Tavakol, A gravitational entropy proposal, Class. Quantum Gravity 30(12), 125009 (2013)
CrossRef ADS Google scholar
[26]
S. Barve and T. P. Singh, Are naked singularities forbidden by the second law of thermodynamics? Mod. Phys. Lett. A 12(32), 2415 (1997)
CrossRef ADS Google scholar
[27]
J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7(8), 2333 (1973)
CrossRef ADS Google scholar
[28]
J. M. Bardeen, B. Carter, and S. W. Hawking, The four laws of black hole mechanics, Commun. Math. Phys. 31(2), 161 (1973)
CrossRef ADS Google scholar
[29]
N. Li, X. L. Li, and S. P. Song, An exploration of the black hole entropy via the Weyl tensor, Eur. Phys. J. C 76(3), 111 (2016)
CrossRef ADS Google scholar
[30]
R. Emparan and H. S. Reall, A rotating black ring solution in five dimensions, Phys. Rev. Lett. 88(10), 101101 (2002)
CrossRef ADS Google scholar
[31]
H. Elvang and R. Emparan, Black rings, supertubes, and a stringy resolution of black hole non-uniqueness, J. High Energy Phys. 2003(11), 035 (2003)
[32]
R. Emparan, Rotating circular strings, and in finite non-uniqueness of black rings, J. High Energy Phys. 2004(03), 064 (2004)
[33]
R. Emparan and H. S. Reall, Black rings, Class. Quantum Gravity 23(20), R169 (2006)
CrossRef ADS Google scholar
[34]
H. Elvang, R. Emparan, and A. Virmani, Dynamics and stability of black rings, J. High Energy Phys. 2006(12), 074 (2006)
[35]
H. Elvang, R. Emparan, and P. Figueras, Phases of fivedimensional black holes, J. High Energy Phys. 2007(05), 056 (2007)
[36]
R. Emparan, T. Harmark, V. Niarchos, N. A. Obers, and M. J. Rodriguez, The phase structure of higherdimensional black rings and black holes, J. High Energy Phys. 2007(10), 110 (2007)
CrossRef ADS Google scholar
[37]
R. Emparan and H. S. Reall, Black holes in higher dimensions, Living Rev. Relativ. 11(1), 6 (2008)
CrossRef ADS Google scholar
[38]
R. Emparan and H. S. Reall, Black Holes in Higher Dimensions, Cambridge: Cambridge University Press, 2012
[39]
R. C. Myers and M. J. Perry, Black holes in higher dimensional space-times, Ann. Phys. 172(2), 304 (1986)
CrossRef ADS Google scholar
[40]
R. Gregory and R. Laflamme, Black strings and pbranes are unstable, Phys. Rev. Lett. 70(19), 2837 (1993)
CrossRef ADS Google scholar
[41]
R. Gregory and R. Laflamme, The instability of charged black strings and p-branes, Nucl. Phys. B 428(1–2), 399 (1994)
CrossRef ADS Google scholar
[42]
A. A. Pomeransky and R. A. Sen’kov, Black ring with two angular momenta, arXiv: hep-th/0612005 (2006)
[43]
P. Figueras and S. Tunyasuvunakool, Black rings in global anti-de Sitter space, J. High Energy Phys. 2015(03), 149 (2015)
CrossRef ADS Google scholar
[44]
M. M. Caldarelli, R. Emparan, and M. J. Rodríguez, Black rings in (anti)-de Sitter space, J. High Energy Phys. 2008(11), 011 (2008)
[45]
R. Bousso and S. W. Hawking, (Anti-)evaporation of Schwarzschild–de Sitter black holes, Phys. Rev. D 57(4), 2436 (1998)
CrossRef ADS Google scholar
[46]
F. L. Lin and Y. S. Wu, Near-horizon virasoro symmetry and the entropy of de Sitter space in any dimension, Phys. Lett. B 453(3–4), 222 (1999)
CrossRef ADS Google scholar
[47]
Z. Stuchlík and S. Hledík, Some properties of the Schwarzschild–de Sitter and Schwarzschild–anti-de Sitter spacetimes, Phys. Rev. D 60(4), 044006 (1999)
CrossRef ADS Google scholar
[48]
Y. S. Myung, Entropy of the three-dimensional Schwarzschild–de Sitter black hole, Mod. Phys. Lett. A 16(36), 2353 (2001)
CrossRef ADS Google scholar
[49]
V. Balasubramanian, J. de Boer, and D. Minic, Mass, entropy, and holography in asymptotically de Sitter spaces, Phys. Rev. D 65(12), 123508 (2002)
CrossRef ADS Google scholar
[50]
A. M. Ghezelbash and R. B. Mann, Action, mass and entropy of Schwarzschild–de Sitter black holes and the de Sitter/CFT correspondence, J. High Energy Phys. 2002(01), 005 (2002)
[51]
M. R. Setare, The Cardy–Verlinde formula and entropy of topological Reissner–Nordstrom black holes in de Sitter spaces, Mod. Phys. Lett. A 17(32), 2089 (2002)
CrossRef ADS Google scholar
[52]
V. Cardoso and J. P. S. Lemos, Quasinormal modes of the near extremal Schwarzschild–de Sitter black hole, Phys. Rev. D 67(8), 084020 (2003)
CrossRef ADS Google scholar
[53]
S. Shankaranarayanan, Temperature and entropy of Schwarzschild–de Sitter space-time, Phys. Rev. D 67(8), 084026 (2003)
CrossRef ADS Google scholar
[54]
Y. S. Myung, Relationship between five-dimensional black holes and de Sitter spaces, Class. Quantum Gravity 21(4), 1279 (2004)
CrossRef ADS Google scholar
[55]
Y. S. Myung, Thermodynamics of the Schwarzschild–de Sitter black hole: Thermal stability of the Nariai black hole, Phys. Rev. D 77(10), 104007 (2008)
CrossRef ADS Google scholar
[56]
A. Araujo and J. G. Pereira, Entropy in locally-de Sitter spacetimes, Int. J. Mod. Phys. D 24(14), 1550099 (2015)
CrossRef ADS Google scholar
[57]
S. Bhattacharya, A note on entropy of de Sitter black holes, Eur. Phys. J. C 76(3), 112 (2016)
CrossRef ADS Google scholar
[58]
D. Kubizňák and F. Simovic, Thermodynamics of horizons: de Sitter black holes and reentrant phase transitions, Class. Quantum Gravity 33(24), 245001 (2016)
CrossRef ADS Google scholar
[59]
M. Khuri and E. Woolgar, Nonexistence of extremal de Sitter black rings, Class. Quantum Gravity 34(22), 22LT01 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(178 KB)

Accesses

Citations

Detail

Sections
Recommended

/