Photon and positron generation by ultrahigh intensity laser interaction with electron beams

Muhammad Ali Bake, Aimierding Aimidula, Arkin Zakir, Nuriman Abdukerim, Abduleziz Ablat

PDF(1746 KB)
PDF(1746 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 135202. DOI: 10.1007/s11467-018-0788-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Photon and positron generation by ultrahigh intensity laser interaction with electron beams

Author information +
History +

Abstract

This study investigates the generation of high energy photons and positrons using focused ultrahigh intensity femtosecond laser pulses on a relativistic electron beam with a set of two-dimensional particlein- cell simulations. We consider circularly and linearly polarized, single and spatially separated double laser pulses. We model both 500 MeV and 1 GeV electron beams. Higher positron production is obtained using circularly polarized laser pulses. Using double pulses, the focusing effect of the ponderomotive force confines the electrons to a small volume, generating additional energetic photons and positrons. The positron spectral distributions are effectively modified by these variations. When the electron beam energy is doubled, the number of positrons increased, while the cutoff energy remained nearly constant.

Keywords

laser-electron beam interaction / photon and positron generation / QED effect

Cite this article

Download citation ▾
Muhammad Ali Bake, Aimierding Aimidula, Arkin Zakir, Nuriman Abdukerim, Abduleziz Ablat. Photon and positron generation by ultrahigh intensity laser interaction with electron beams. Front. Phys., 2018, 13(4): 135202 https://doi.org/10.1007/s11467-018-0788-9

References

[1]
E. Esarey, C. B. Schroeder, and W. P. Leemans, Physics of laser-driven plasma-based electron accelerators, Rev. Mod. Phys. 81(3), 1229 (2009)
CrossRef ADS Google scholar
[2]
S. M. Hooker, Developments in laser-driven plasma accelerators, Nat. Photon. 7(10), 775 (2013)
CrossRef ADS Google scholar
[3]
A. Macchi, M. Borghesi, and M. Passoni, Ion acceleration by superintense laser-plasma interaction, Rev. Mod. Phys. 85(2), 751 (2013)
CrossRef ADS Google scholar
[4]
H. Daido, M. Nishiuchi, and A. S. Pirozhkov, Review of laser-driven ion sources and their applications, Rep. Prog. Phys. 75(5), 056401 (2012)
CrossRef ADS Google scholar
[5]
B. A. Remington, R. P. Drake, and D. D. Ryutov, Experimental astrophysics with high power lasers and Zpinches, Rev. Mod. Phys. 78(3), 755 (2006)
CrossRef ADS Google scholar
[6]
G. A. Mourou, T. Tajima, and S. V. Bulanov, Optics in the relativistic regime, Rev. Mod. Phys. 78(2), 309 (2006)
CrossRef ADS Google scholar
[7]
E. L. I. Beamlines, www.eli-beams.eu
[8]
F. Ehlotzky, K. Krajewska, and J. Z. Kaminski, Fundamental processes of quantum electrodynamics in laser fields of relativistic power, Rep. Prog. Phys. 72(4), 046401 (2009)
CrossRef ADS Google scholar
[9]
A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys. 84(3), 1177 (2012)
CrossRef ADS Google scholar
[10]
S. Gales, D. L. Balabanski, F. Negoita, O. Tesileanu, C. A. Ur, D. Ursescu, and N. V. Zamfir, New frontiers in nuclear physics with high-power lasers and brilliant monochromatic gamma beams,Phys. Scr. 91(9), 093004 (2016)
CrossRef ADS Google scholar
[11]
E. Liang, Gamma-ray and pair creation using ultraintense lasers and astrophysical applications, High Energy Density Phys. 9(3), 425 (2013)
CrossRef ADS Google scholar
[12]
P. Chen and G. Mourou, Accelerating plasma mirrors to investigate the black hole information loss paradox, Phys. Rev. Lett. 118(4), 045001 (2017)
CrossRef ADS Google scholar
[13]
A. A. Gonoskov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, and A. Sergeev, Probing nonperturbative QED with optimally focused laser pulses, Phys. Rev. Lett. 111(6), 060404 (2013)
CrossRef ADS Google scholar
[14]
M. Vranic, T. Grismayer, R. A. Fonseca, and L. O. Silva, Quantum radiation reaction in head-on laser-electron beam interaction, New J. Phys. 18(7), 073035 (2016)
CrossRef ADS Google scholar
[15]
T. G. Blackburn, C. P. Ridgers, J. G. Kirk, and A. R. Bell, Quantum radiation reaction in laser–electronbeam collisions, Phys. Rev. Lett. 112(1), 015001 (2014)
CrossRef ADS Google scholar
[16]
I. V. Sokolov, N. M. Naumova, J. A. Nees, and G. A. Mourou, Pair creation in QED-strong pulsed laser fields interacting with electron beams, Phys. Rev. Lett. 105(19), 195005 (2010)
CrossRef ADS Google scholar
[17]
A. R. Bell and J. G. Kirk, Possibility of prolific pair production with high-power lasers, Phys. Rev. Lett. 101(20), 200403 (2008)
CrossRef ADS Google scholar
[18]
C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, and A. R. Bell, Dense electron-positron plasmas and bursts of gamma-rays from laser-generated quantum electrodynamic plasmas, Phys. Plasmas 20(5), 056701 (2013)
CrossRef ADS Google scholar
[19]
C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, Dense electron-positron plasmas and ultraintense g rays from laser-irradiated solids, Phys. Rev. Lett. 108(16), 165006 (2012)
CrossRef ADS Google scholar
[20]
J. R. Danielson, D. H. E. Dubin, R. G. Greaves, and C. M. Surko, Plasma and trap-based techniques for science with positrons, Rev. Mod. Phys. 87(1), 247 (2015)
CrossRef ADS Google scholar
[21]
S. S. Bulanov, T. Zh. Esirkepov, A. G. R. Thomas, J. K. Koga, and S. V. Bulanov, Schwinger limit attainability with extreme power lasers, Phys. Rev. Lett. 105(22), 220407 (2010)
CrossRef ADS Google scholar
[22]
M. Jirka, O. Klimo, S. V. Bulanov, T. Zh. Esirkepov, E. Gelfer, S. S. Bulanov, S. Weber, and G. Korn, Electron dynamics and g and ee+ production by colliding laser pulses, Phys. Rev. E 93(2), 023207 (2016)
CrossRef ADS Google scholar
[23]
T. Grismayer, M. Vranic, J. L. Martins, R. A. Fonseca, and L. O. Silva, Seeded QED cascades in counterpropagating laser pulses, Phys. Rev. E 95(2), 023210 (2017)
CrossRef ADS Google scholar
[24]
S. Augustin and C. Müller, Interference effects in Bethe- Heitler pair creation in a bichromatic laser field, Phys. Rev. A 88(2), 022109 (2013)
CrossRef ADS Google scholar
[25]
K. Krajewska and J. Z. Kami’nski, Breit-Wheeler process in intense short laser pulses, Phys. Rev. A 86(5), 052104 (2012)
CrossRef ADS Google scholar
[26]
B. F. Shen and J. Meyer-ter-Vehn, Pair and g-photon production from a thin foil confined by two laser pulses, Phys. Rev. E 65(1), 016405 (2001)
CrossRef ADS Google scholar
[27]
H. Y. Hu, C. Müller, and C. H. Keitel, Complete QED theory of multiphoton trident pair production in strong laser fields, Phys. Rev. Lett. 105(8), 080401 (2010)
CrossRef ADS Google scholar
[28]
A. Ilderton, Trident pair production in strong laser pulses, Phys. Rev. Lett. 106(2), 020404 (2011)
CrossRef ADS Google scholar
[29]
S. Tang, M. A. Bake, H. Y. Wang, and B. S. Xie, QED cascade induced by a high-energy γ photon in a strong laser field, Phys. Rev. A 89, 022105 (2014)
CrossRef ADS Google scholar
[30]
D. L. Burke, R. C. Field, G. Horton-Smith, J. E. Spencer, D. Walz, S. C. Berridge, W. M. Bugg, K. Shmakov, A. W. Weidemann, C. Bula, K. T. McDonald, E. J. Prebys, C. Bamber, S. J. Boege, T. Koffas, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, D. A. Reis, and W. Ragg, Positron production in multiphoton light-by-light scattering, Phys. Rev. Lett. 79(9), 1626 (1997)
CrossRef ADS Google scholar
[31]
C. Bamber, S. J. Boege, T. Koffas, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, D. A. Reis, W. Ragg, C. Bula, K. T. McDonald, E. J. Prebys, D. L. Burke, R. C. Field, G. Horton-Smith, J. E. Spencer, D. Walz, S. C. Berridge, W. M. Bugg, K. Shmakov, and A. W. Weidemann, Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses, Phys. Rev. D 60(9), 092004 (1999)
CrossRef ADS Google scholar
[32]
M. Amoretti, C. Amsler, G. Bonomi, A. Bouchta, P. Bowe, et al., Production and detection of cold antihydrogen atoms, Nature 419(6906), 456 (2002)
CrossRef ADS Google scholar
[33]
A. N. Timokhin, Time-dependent pair cascades in magnetospheres of neutron stars (I): Dynamics of the polar cap cascade with no particle supply from the neutron star surface, Mon. Not. R. Astron. Soc. 408(4), 2092 (2010)
CrossRef ADS Google scholar
[34]
T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, Contemporary particle-in-cell approach to laser-plasma modelling, Plasma Phys. Contr. Fusion 57(11), 113001 (2015)
CrossRef ADS Google scholar
[35]
G. Mourou, B. Brocklesby, T. Tajima, and J. Limpert, The future is fibre accelerators, Nat. Photon. 7(4), 258 (2013)
CrossRef ADS Google scholar
[36]
M. L. Zhou, B. Liu, R. H. Hu, Y. R. Shou, C. Lin, H. Y. Lu, Y. R. Lu, Y. Q. Gu, W. J. Ma, and X. Q. Yan, Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses, Phys. Plasmas 23(8), 083109 (2016)
CrossRef ADS Google scholar
[37]
W. P. Leemans, A. J. Gonsalves, H. S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J. L. Vay, C. G. R. Geddes, and E. Esarey, Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime, Phys. Rev. Lett. 113(24), 245002 (2014)
CrossRef ADS Google scholar
[38]
X. M. Wang, R. Zgadzaj, N. Fazel, Z. Y. Li, S. A. Yi, et al., Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV, Nat. Commun. 4, 1988 (2013)
CrossRef ADS Google scholar
[39]
M. Mirzaie, S. Li, M. Zeng, N. A. M. Hafz, M. Chen, G. Y. Li, Q. J. Zhu, H. Liao, T. Sokollik, F. Liu, Y. Y. Ma, L. M. Chen, Z. M. Sheng, and J. Zhang, Demonstration of self-truncated ionization injection for GeV electron beams, Sci. Rep. 5(1), 14659 (2015)
CrossRef ADS Google scholar
[40]
S. Cipiccia, M. R. Islam, B. Ersfeld, R. P. Shanks, E. Brunetti, et al., Gamma-rays from harmonically resonant betatron oscillations in a plasma wake, Nat. Phys. 7(11), 867 (2011)
[41]
N. Abdukerim, Z. L. Li, and B. S. Xie, Electronpositron pair production in the low-density approximation, Front. Phys. 10(4), 101202 (2015)
CrossRef ADS Google scholar
[42]
Z. L. Li, D. Lu, and B. S. Xie, Dynamically assisted pair production for scalar QED by two fields, Front. Phys. 10(2), 101201 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1746 KB)

Accesses

Citations

Detail

Sections
Recommended

/