Photon and positron generation by ultrahigh intensity laser interaction with electron beams

Muhammad Ali Bake , Aimierding Aimidula , Arkin Zakir , Nuriman Abdukerim , Abduleziz Ablat

Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 135202

PDF (1746KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 135202 DOI: 10.1007/s11467-018-0788-9
RESEARCH ARTICLE

Photon and positron generation by ultrahigh intensity laser interaction with electron beams

Author information +
History +
PDF (1746KB)

Abstract

This study investigates the generation of high energy photons and positrons using focused ultrahigh intensity femtosecond laser pulses on a relativistic electron beam with a set of two-dimensional particlein- cell simulations. We consider circularly and linearly polarized, single and spatially separated double laser pulses. We model both 500 MeV and 1 GeV electron beams. Higher positron production is obtained using circularly polarized laser pulses. Using double pulses, the focusing effect of the ponderomotive force confines the electrons to a small volume, generating additional energetic photons and positrons. The positron spectral distributions are effectively modified by these variations. When the electron beam energy is doubled, the number of positrons increased, while the cutoff energy remained nearly constant.

Keywords

laser-electron beam interaction / photon and positron generation / QED effect

Cite this article

Download citation ▾
Muhammad Ali Bake, Aimierding Aimidula, Arkin Zakir, Nuriman Abdukerim, Abduleziz Ablat. Photon and positron generation by ultrahigh intensity laser interaction with electron beams. Front. Phys., 2018, 13(4): 135202 DOI:10.1007/s11467-018-0788-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

E. Esarey, C. B. Schroeder, and W. P. Leemans, Physics of laser-driven plasma-based electron accelerators, Rev. Mod. Phys. 81(3), 1229 (2009)

[2]

S. M. Hooker, Developments in laser-driven plasma accelerators, Nat. Photon. 7(10), 775 (2013)

[3]

A. Macchi, M. Borghesi, and M. Passoni, Ion acceleration by superintense laser-plasma interaction, Rev. Mod. Phys. 85(2), 751 (2013)

[4]

H. Daido, M. Nishiuchi, and A. S. Pirozhkov, Review of laser-driven ion sources and their applications, Rep. Prog. Phys. 75(5), 056401 (2012)

[5]

B. A. Remington, R. P. Drake, and D. D. Ryutov, Experimental astrophysics with high power lasers and Zpinches, Rev. Mod. Phys. 78(3), 755 (2006)

[6]

G. A. Mourou, T. Tajima, and S. V. Bulanov, Optics in the relativistic regime, Rev. Mod. Phys. 78(2), 309 (2006)

[7]

E. L. I. Beamlines,

[8]

F. Ehlotzky, K. Krajewska, and J. Z. Kaminski, Fundamental processes of quantum electrodynamics in laser fields of relativistic power, Rep. Prog. Phys. 72(4), 046401 (2009)

[9]

A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys. 84(3), 1177 (2012)

[10]

S. Gales, D. L. Balabanski, F. Negoita, O. Tesileanu, C. A. Ur, D. Ursescu, and N. V. Zamfir, New frontiers in nuclear physics with high-power lasers and brilliant monochromatic gamma beams,Phys. Scr. 91(9), 093004 (2016)

[11]

E. Liang, Gamma-ray and pair creation using ultraintense lasers and astrophysical applications, High Energy Density Phys. 9(3), 425 (2013)

[12]

P. Chen and G. Mourou, Accelerating plasma mirrors to investigate the black hole information loss paradox, Phys. Rev. Lett. 118(4), 045001 (2017)

[13]

A. A. Gonoskov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, and A. Sergeev, Probing nonperturbative QED with optimally focused laser pulses, Phys. Rev. Lett. 111(6), 060404 (2013)

[14]

M. Vranic, T. Grismayer, R. A. Fonseca, and L. O. Silva, Quantum radiation reaction in head-on laser-electron beam interaction, New J. Phys. 18(7), 073035 (2016)

[15]

T. G. Blackburn, C. P. Ridgers, J. G. Kirk, and A. R. Bell, Quantum radiation reaction in laser–electronbeam collisions, Phys. Rev. Lett. 112(1), 015001 (2014)

[16]

I. V. Sokolov, N. M. Naumova, J. A. Nees, and G. A. Mourou, Pair creation in QED-strong pulsed laser fields interacting with electron beams, Phys. Rev. Lett. 105(19), 195005 (2010)

[17]

A. R. Bell and J. G. Kirk, Possibility of prolific pair production with high-power lasers, Phys. Rev. Lett. 101(20), 200403 (2008)

[18]

C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, and A. R. Bell, Dense electron-positron plasmas and bursts of gamma-rays from laser-generated quantum electrodynamic plasmas, Phys. Plasmas 20(5), 056701 (2013)

[19]

C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, Dense electron-positron plasmas and ultraintense g rays from laser-irradiated solids, Phys. Rev. Lett. 108(16), 165006 (2012)

[20]

J. R. Danielson, D. H. E. Dubin, R. G. Greaves, and C. M. Surko, Plasma and trap-based techniques for science with positrons, Rev. Mod. Phys. 87(1), 247 (2015)

[21]

S. S. Bulanov, T. Zh. Esirkepov, A. G. R. Thomas, J. K. Koga, and S. V. Bulanov, Schwinger limit attainability with extreme power lasers, Phys. Rev. Lett. 105(22), 220407 (2010)

[22]

M. Jirka, O. Klimo, S. V. Bulanov, T. Zh. Esirkepov, E. Gelfer, S. S. Bulanov, S. Weber, and G. Korn, Electron dynamics and g and ee+ production by colliding laser pulses, Phys. Rev. E 93(2), 023207 (2016)

[23]

T. Grismayer, M. Vranic, J. L. Martins, R. A. Fonseca, and L. O. Silva, Seeded QED cascades in counterpropagating laser pulses, Phys. Rev. E 95(2), 023210 (2017)

[24]

S. Augustin and C. Müller, Interference effects in Bethe- Heitler pair creation in a bichromatic laser field, Phys. Rev. A 88(2), 022109 (2013)

[25]

K. Krajewska and J. Z. Kami’nski, Breit-Wheeler process in intense short laser pulses, Phys. Rev. A 86(5), 052104 (2012)

[26]

B. F. Shen and J. Meyer-ter-Vehn, Pair and g-photon production from a thin foil confined by two laser pulses, Phys. Rev. E 65(1), 016405 (2001)

[27]

H. Y. Hu, C. Müller, and C. H. Keitel, Complete QED theory of multiphoton trident pair production in strong laser fields, Phys. Rev. Lett. 105(8), 080401 (2010)

[28]

A. Ilderton, Trident pair production in strong laser pulses, Phys. Rev. Lett. 106(2), 020404 (2011)

[29]

S. Tang, M. A. Bake, H. Y. Wang, and B. S. Xie, QED cascade induced by a high-energy γ photon in a strong laser field, Phys. Rev. A 89, 022105 (2014)

[30]

D. L. Burke, R. C. Field, G. Horton-Smith, J. E. Spencer, D. Walz, S. C. Berridge, W. M. Bugg, K. Shmakov, A. W. Weidemann, C. Bula, K. T. McDonald, E. J. Prebys, C. Bamber, S. J. Boege, T. Koffas, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, D. A. Reis, and W. Ragg, Positron production in multiphoton light-by-light scattering, Phys. Rev. Lett. 79(9), 1626 (1997)

[31]

C. Bamber, S. J. Boege, T. Koffas, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, D. A. Reis, W. Ragg, C. Bula, K. T. McDonald, E. J. Prebys, D. L. Burke, R. C. Field, G. Horton-Smith, J. E. Spencer, D. Walz, S. C. Berridge, W. M. Bugg, K. Shmakov, and A. W. Weidemann, Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses, Phys. Rev. D 60(9), 092004 (1999)

[32]

M. Amoretti, C. Amsler, G. Bonomi, A. Bouchta, P. Bowe, et al., Production and detection of cold antihydrogen atoms, Nature 419(6906), 456 (2002)

[33]

A. N. Timokhin, Time-dependent pair cascades in magnetospheres of neutron stars (I): Dynamics of the polar cap cascade with no particle supply from the neutron star surface, Mon. Not. R. Astron. Soc. 408(4), 2092 (2010)

[34]

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, Contemporary particle-in-cell approach to laser-plasma modelling, Plasma Phys. Contr. Fusion 57(11), 113001 (2015)

[35]

G. Mourou, B. Brocklesby, T. Tajima, and J. Limpert, The future is fibre accelerators, Nat. Photon. 7(4), 258 (2013)

[36]

M. L. Zhou, B. Liu, R. H. Hu, Y. R. Shou, C. Lin, H. Y. Lu, Y. R. Lu, Y. Q. Gu, W. J. Ma, and X. Q. Yan, Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses, Phys. Plasmas 23(8), 083109 (2016)

[37]

W. P. Leemans, A. J. Gonsalves, H. S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J. L. Vay, C. G. R. Geddes, and E. Esarey, Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime, Phys. Rev. Lett. 113(24), 245002 (2014)

[38]

X. M. Wang, R. Zgadzaj, N. Fazel, Z. Y. Li, S. A. Yi, et al., Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV, Nat. Commun. 4, 1988 (2013)

[39]

M. Mirzaie, S. Li, M. Zeng, N. A. M. Hafz, M. Chen, G. Y. Li, Q. J. Zhu, H. Liao, T. Sokollik, F. Liu, Y. Y. Ma, L. M. Chen, Z. M. Sheng, and J. Zhang, Demonstration of self-truncated ionization injection for GeV electron beams, Sci. Rep. 5(1), 14659 (2015)

[40]

S. Cipiccia, M. R. Islam, B. Ersfeld, R. P. Shanks, E. Brunetti, et al., Gamma-rays from harmonically resonant betatron oscillations in a plasma wake, Nat. Phys. 7(11), 867 (2011)

[41]

N. Abdukerim, Z. L. Li, and B. S. Xie, Electronpositron pair production in the low-density approximation, Front. Phys. 10(4), 101202 (2015)

[42]

Z. L. Li, D. Lu, and B. S. Xie, Dynamically assisted pair production for scalar QED by two fields, Front. Phys. 10(2), 101201 (2015)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1746KB)

769

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/