Temperature dependence of the excitonic spectra of monolayer transition metal dichalcogenides

Zi-Wu Wang , Run-Ze Li , Xi-Ying Dong , Yao Xiao , Zhi-Qing Li

Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 137305

PDF (2822KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 137305 DOI: 10.1007/s11467-018-0786-y
RESEARCH ARTICLE

Temperature dependence of the excitonic spectra of monolayer transition metal dichalcogenides

Author information +
History +
PDF (2822KB)

Abstract

We theoretically study the temperature dependence of the excitonic spectra of monolayer transition metal dichalcogenides using the O′Donnell equation, Eg(T)=Eg(0)Sw[cothw2kBT1]. We develop a theoretical model for the quantitative estimation of the Huang–Rhys factor S and average phonon energy w based on exciton coupling with longitudinal optical and acoustic phonons in the Fröhlich and deformation potential mechanisms, respectively. We present reasonable explanations for the fitted values of the Huang–Rhys factor and average phonon energy adopted in experiments. Comparison with experimental results reveals that the temperature dependence of the peak position in the excitonic spectra can be well reproduced by modulating the polarization parameter and deformation potential constant.

Keywords

transition metal dichalcogenides / exciton / Huang–Rhys factor

Cite this article

Download citation ▾
Zi-Wu Wang, Run-Ze Li, Xi-Ying Dong, Yao Xiao, Zhi-Qing Li. Temperature dependence of the excitonic spectra of monolayer transition metal dichalcogenides. Front. Phys., 2018, 13(4): 137305 DOI:10.1007/s11467-018-0786-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Y. Yu, X. D. Cui, X. D. Xu, and W. Yao, Valley excitons in two-dimensional semiconductors, Natl. Sci. Rev. 2(1), 57 (2015)

[2]

A. V. Kolobov and J. Tominaga, Two-dimensional transition-metal dichalcogenides, Springer Series in Materials Science 239, 321 (2016)

[3]

S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2, Nano Lett. 12(11), 5576 (2012)

[4]

J. S. Ross, S. F. Wu, H. Y. Yu, N J. Ghimire, A. M. Jones, G. Aivazian, J. Q. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. D. Xu, Electrical control of neutral and charged excitons in a monolayer semiconductor, Nature Commun. 4, 1474 (2013)

[5]

A. P. S. Gaur, S. Sahoo, J. F. Scott, and R. S. Katiyar, Electron–phonon interaction and double-resonance raman studies in monolayer WS2, J. Phys. Chem. C 119(9), 5146 (2015)

[6]

A. Arora, M. Koperski, K. Nogajewski, J. Marcus, C. Faugeras, and M. Potemski, Excitonic resonances in thin films of WSe2: From monolayer to bulk material, Nanoscale 7(23), 10421 (2015)

[7]

A. A. Mitioglu, K. Galkowski, A. Surrente, L. Klopotowski, D. Dumcenco, A. Kis, D. K. Maude, and P. Plochocka, Magnetoexcitons in large area CVD-grown monolayer MoS2 and MoSe2 on sapphire, Phys. Rev. B 93(16), 165412 (2016)

[8]

P. Dey, J. Paul, Z. Wang, C. E. Stevens, C. Liu, A. H. Romero, J. Shan, D. J. Hilton, and D. Karaiskaj, Optical coherence in atomic-monolayer transition-metal dichalcogenides limited by electron-phonon interactions, Phys. Rev. Lett. 116(12), 127402 (2016)

[9]

J. W. Christopher, B. B. Goldberg, and A. K. Swan, Long tailed trions in monolayer MoS2: Temperature dependent asymmetry and resulting red-shift of trion photoluminescence spectra, Sci. Rep. 7(1), 14062 (2017)

[10]

K. P. O’Donnell and X. Chen, Temperature dependence of semiconductor band gaps, Appl. Phys. Lett. 58(25), 2924 (1991)

[11]

K. L. He, N. Kumar, L. Zhao, Z. F. Wang, K. F. Mak, H. Zhao, and J. Shan, Tightly bound excitons in monolayer WSe2, Phys. Rev. Lett. 113(2), 026803 (2014)

[12]

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. L. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2, Phys. Rev. Lett. 113(7), 076802 (2014)

[13]

T. Olsen, S. Latini, F. Rasmussen, and K. S. Thygesen, Simple screened hydrogen model of excitons in twodimensional materials, Phys. Rev. Lett. 116(5), 056401 (2016)

[14]

K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, Phonon-limited mobility in n-type single-layer MoS2 from first principles, Phys. Rev. B 85(11), 115317 (2012)

[15]

K. Kaasbjerg, K. S. Bhargavi, and S. S. Kubakaddi, Hot-electron cooling by acoustic and optical phonons in monolayers of MoS2 and other transition-metal dichalcogenides, Phys. Rev. B 90(16), 165436 (2014)

[16]

A. Ramasubramaniam, Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides, Phys. Rev. B 86(11), 115409 (2012)

[17]

A. Thilagam, Ultrafast exciton relaxation in monolayer transition metal dichalcogenides, J. Appl. Phys. 119(16), 164306 (2016)

[18]

A. Thilagam, Exciton formation assisted by longitudinal optical phonons in monolayer transition metal dichalcogenides, J. Appl. Phys. 120(12), 124306 (2016)

[19]

M. C. Klein, F. Hache, D. Ricard, and C. Flytzanis, Size dependence of electron-phonon coupling in semiconductor nanospheres: The case of CdSe, Phys. Rev. B 42(17), 11123 (1990)

[20]

T. Sohier, M. Calandra, and F. Mauri, Two-dimensional Fröhlich interaction in transition-metal dichalcogenide monolayers: Theoretical modeling and first-principles calculations, Phys. Rev. B 94(8), 085415 (2016)

[21]

C. Jin, J. Kim, J. Suh, Z. Shi, B. Chen, X. Fan, M. Kam, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, J. Q. Wu, and F. Wang, Interlayer electron-phonon coupling in WSe2/hBN heterostructures, Nat. Phys. 13, 127 (2017)

[22]

C. M. Chow, H. Y. Yu, A. M. Jones, J. Q. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. D. Xu, Unusual exciton–phonon interactions at van der Waals engineered interfaces, Nano Lett. 17(2), 1194 (2017)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (2822KB)

984

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/