Temperature dependence of the excitonic spectra of monolayer transition metal dichalcogenides
Zi-Wu Wang, Run-Ze Li, Xi-Ying Dong, Yao Xiao, Zhi-Qing Li
Temperature dependence of the excitonic spectra of monolayer transition metal dichalcogenides
We theoretically study the temperature dependence of the excitonic spectra of monolayer transition metal dichalcogenides using the O′Donnell equation, . We develop a theoretical model for the quantitative estimation of the Huang–Rhys factor S and average phonon energy based on exciton coupling with longitudinal optical and acoustic phonons in the Fröhlich and deformation potential mechanisms, respectively. We present reasonable explanations for the fitted values of the Huang–Rhys factor and average phonon energy adopted in experiments. Comparison with experimental results reveals that the temperature dependence of the peak position in the excitonic spectra can be well reproduced by modulating the polarization parameter and deformation potential constant.
transition metal dichalcogenides / exciton / Huang–Rhys factor
[1] |
H. Y. Yu, X. D. Cui, X. D. Xu, and W. Yao, Valley excitons in two-dimensional semiconductors, Natl. Sci. Rev. 2(1), 57 (2015)
CrossRef
ADS
Google scholar
|
[2] |
A. V. Kolobov and J. Tominaga, Two-dimensional transition-metal dichalcogenides, Springer Series in Materials Science 239, 321 (2016)
CrossRef
ADS
Google scholar
|
[3] |
S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2, Nano Lett. 12(11), 5576 (2012)
CrossRef
ADS
Google scholar
|
[4] |
J. S. Ross, S. F. Wu, H. Y. Yu, N J. Ghimire, A. M. Jones, G. Aivazian, J. Q. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. D. Xu, Electrical control of neutral and charged excitons in a monolayer semiconductor, Nature Commun. 4, 1474 (2013)
CrossRef
ADS
Google scholar
|
[5] |
A. P. S. Gaur, S. Sahoo, J. F. Scott, and R. S. Katiyar, Electron–phonon interaction and double-resonance raman studies in monolayer WS2, J. Phys. Chem. C 119(9), 5146 (2015)
CrossRef
ADS
Google scholar
|
[6] |
A. Arora, M. Koperski, K. Nogajewski, J. Marcus, C. Faugeras, and M. Potemski, Excitonic resonances in thin films of WSe2: From monolayer to bulk material, Nanoscale 7(23), 10421 (2015)
CrossRef
ADS
Google scholar
|
[7] |
A. A. Mitioglu, K. Galkowski, A. Surrente, L. Klopotowski, D. Dumcenco, A. Kis, D. K. Maude, and P. Plochocka, Magnetoexcitons in large area CVD-grown monolayer MoS2 and MoSe2 on sapphire, Phys. Rev. B 93(16), 165412 (2016)
CrossRef
ADS
Google scholar
|
[8] |
P. Dey, J. Paul, Z. Wang, C. E. Stevens, C. Liu, A. H. Romero, J. Shan, D. J. Hilton, and D. Karaiskaj, Optical coherence in atomic-monolayer transition-metal dichalcogenides limited by electron-phonon interactions, Phys. Rev. Lett. 116(12), 127402 (2016)
CrossRef
ADS
Google scholar
|
[9] |
J. W. Christopher, B. B. Goldberg, and A. K. Swan, Long tailed trions in monolayer MoS2: Temperature dependent asymmetry and resulting red-shift of trion photoluminescence spectra, Sci. Rep. 7(1), 14062 (2017)
CrossRef
ADS
Google scholar
|
[10] |
K. P. O’Donnell and X. Chen, Temperature dependence of semiconductor band gaps, Appl. Phys. Lett. 58(25), 2924 (1991)
CrossRef
ADS
Google scholar
|
[11] |
K. L. He, N. Kumar, L. Zhao, Z. F. Wang, K. F. Mak, H. Zhao, and J. Shan, Tightly bound excitons in monolayer WSe2, Phys. Rev. Lett. 113(2), 026803 (2014)
CrossRef
ADS
Google scholar
|
[12] |
A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. L. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2, Phys. Rev. Lett. 113(7), 076802 (2014)
CrossRef
ADS
Google scholar
|
[13] |
T. Olsen, S. Latini, F. Rasmussen, and K. S. Thygesen, Simple screened hydrogen model of excitons in twodimensional materials, Phys. Rev. Lett. 116(5), 056401 (2016)
CrossRef
ADS
Google scholar
|
[14] |
K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, Phonon-limited mobility in n-type single-layer MoS2 from first principles, Phys. Rev. B 85(11), 115317 (2012)
CrossRef
ADS
Google scholar
|
[15] |
K. Kaasbjerg, K. S. Bhargavi, and S. S. Kubakaddi, Hot-electron cooling by acoustic and optical phonons in monolayers of MoS2 and other transition-metal dichalcogenides, Phys. Rev. B 90(16), 165436 (2014)
CrossRef
ADS
Google scholar
|
[16] |
A. Ramasubramaniam, Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides, Phys. Rev. B 86(11), 115409 (2012)
CrossRef
ADS
Google scholar
|
[17] |
A. Thilagam, Ultrafast exciton relaxation in monolayer transition metal dichalcogenides, J. Appl. Phys. 119(16), 164306 (2016)
CrossRef
ADS
Google scholar
|
[18] |
A. Thilagam, Exciton formation assisted by longitudinal optical phonons in monolayer transition metal dichalcogenides, J. Appl. Phys. 120(12), 124306 (2016)
CrossRef
ADS
Google scholar
|
[19] |
M. C. Klein, F. Hache, D. Ricard, and C. Flytzanis, Size dependence of electron-phonon coupling in semiconductor nanospheres: The case of CdSe, Phys. Rev. B 42(17), 11123 (1990)
CrossRef
ADS
Google scholar
|
[20] |
T. Sohier, M. Calandra, and F. Mauri, Two-dimensional Fröhlich interaction in transition-metal dichalcogenide monolayers: Theoretical modeling and first-principles calculations, Phys. Rev. B 94(8), 085415 (2016)
CrossRef
ADS
Google scholar
|
[21] |
C. Jin, J. Kim, J. Suh, Z. Shi, B. Chen, X. Fan, M. Kam, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, J. Q. Wu, and F. Wang, Interlayer electron-phonon coupling in WSe2/hBN heterostructures, Nat. Phys. 13, 127 (2017)
|
[22] |
C. M. Chow, H. Y. Yu, A. M. Jones, J. Q. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. D. Xu, Unusual exciton–phonon interactions at van der Waals engineered interfaces, Nano Lett. 17(2), 1194 (2017)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |