Evolution of individual quantum Hall edge states in the presence of disorder

Kai-Tong Wang, Fuming Xu, Yanxia Xing, Hong-Kang Zhao

PDF(1396 KB)
PDF(1396 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 137306. DOI: 10.1007/s11467-018-0784-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Evolution of individual quantum Hall edge states in the presence of disorder

Author information +
History +

Abstract

By using the Bloch eigenmode matching approach, we numerically study the evolution of individual quantum Hall edge states with respect to disorder. As demonstrated by the two-parameter renormalization group flow of the Hall and Thouless conductances, quantum Hall edge states with high Chern number n are completely different from that of the n = 1 case. Two categories of individual edge modes are evaluated in a quantum Hall system with high Chern number. Edge states from the lowest Landau level have similar eigenfunctions that are well localized at the system edge and independent of the Fermi energy. On the other hand, at fixed Fermi energy, the edge state from higher Landau levels exhibit larger expansion, which results in less stable quantum Hall states at high Fermi energies. By presenting the local current density distribution, the effect of disorder on eigenmode-resolved edge states is distinctly demonstrated.

Keywords

quantum Hall edge states / Landau level / quantum phase transition

Cite this article

Download citation ▾
Kai-Tong Wang, Fuming Xu, Yanxia Xing, Hong-Kang Zhao. Evolution of individual quantum Hall edge states in the presence of disorder. Front. Phys., 2018, 13(4): 137306 https://doi.org/10.1007/s11467-018-0784-0

References

[1]
K. V. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
CrossRef ADS Google scholar
[2]
A. Bao, Y. H. Chen, H. F. Lin, H. D. Liu, and X. Z. Zhang, Quantum phase transitions in two-dimensional strongly correlated fermion systems, Front. Phys. 10(5), 106401 (2015)
CrossRef ADS Google scholar
[3]
F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod. Phys. 80(4), 1355 (2008)
CrossRef ADS Google scholar
[4]
A. M. M. Pruisken, Universal singularities in the integral quantum Hall effect, Phys. Rev. Lett. 61(11), 1297 (1988)
CrossRef ADS Google scholar
[5]
D. E. Khmel’nitskii, Quantization of Hall conductivity, Pis’ma Z. Eksp. Teor. Fiz. 38, 454 (1983) [JETP Lett. 38(9), 552 (1983)]
[6]
J. Song, and E. Prodan, Characterization of the quantized Hall insulator phase in the quantum critical regime, Eur. Phys. Lett. 105(3), 37001 (2014)
CrossRef ADS Google scholar
[7]
M. A. Werner, A. Brataas, F. von Oppen, and G. Zaránd, Anderson localization and quantum Hall effect: Numerical observation of two-parameter scaling, Phys. Rev. B 91(12), 125418 (2015)
CrossRef ADS Google scholar
[8]
S. Kivelson, D. H. Lee, and S. C. Zhang, Global phase diagram in the quantum Hall effect, Phys. Rev. B 46(4), 2223 (1992)
CrossRef ADS Google scholar
[9]
S. H. Song, D. Shahar, D. C. Tsui, Y. H. Xie, and D. Monroe, New universality at the magnetic field driven insulator to integer quantum Hall effect transitions, Phys. Rev. Lett. 78(11), 2200 (1997)
CrossRef ADS Google scholar
[10]
T. Wang, K. P. Clark, G. F. Spencer, A. M. Mack, and W. P. Kirk, Magnetic-field-induced metal-insulator transition in two dimensions, Phys. Rev. Lett. 72(5), 709 (1994)
CrossRef ADS Google scholar
[11]
S. V. Kravchenko, W. Mason, J. E. Furneaux, and V. M. Pudalov, Global phase diagram for the quantum Hall effect: An experimental picture,Phys. Rev. Lett. 75(5), 910 (1995)
CrossRef ADS Google scholar
[12]
D. N. Sheng and Z. Y. Weng, New universality of the metal-insulator transition in an integer quantum Hall effect system, Phys. Rev. Lett. 80(3), 580 (1998)
CrossRef ADS Google scholar
[13]
D. N. Sheng and Z. Y. Weng, Phase diagram of the integer quantum Hall effect, Phys. Rev. B 62(23), 15363 (2000)
CrossRef ADS Google scholar
[14]
X. C. Xie, D. Z. Liu, B. Sundaram, and Q. Niu, Transition from the integer quantum Hall state to the insulator state, Phys. Rev. B 54(7), 4966 (1996)
CrossRef ADS Google scholar
[15]
B. I. Halperin, Quantized Hall conductance, currentcarrying edge states, and the existence of extended states in a two-dimensional disordered potential, Phys. Rev. B 25(4), 2185 (1982)
CrossRef ADS Google scholar
[16]
M. Büttiker, Absence of backscattering in the quantum Hall effect in multiprobe conductors, Phys. Rev. B 38, 9375 (1988)
CrossRef ADS Google scholar
[17]
Y. Ren, Z. Qiao, and Q. Niu, Topological phases in two-dimensional materials: A review, Rep. Prog. Phys. 79(6), 066501 (2016)
CrossRef ADS Google scholar
[18]
Y. Ren, J. Zeng, K. Wang, F. Xu, and Z. Qiao, Tunable current partition at zero-line intersection of quantum anomalous Hall topologies, Phys. Rev. B 96(15), 155445 (2017)
CrossRef ADS Google scholar
[19]
Q. Niu, D. J. Thouless, and Y. S. Wu, Quantized Hall conductance as a topological invariant, Phys. Rev. B 31(6), 3372 (1985)
CrossRef ADS Google scholar
[20]
Y. Hatsugai, K. Ishibashi, and Y. Morita, Sum rule of Hall conductance in a random quantum phase transition, Phys. Rev. Lett. 83(11), 2246 (1999)
CrossRef ADS Google scholar
[21]
A. M. Essin and J. E. Moore, Topological insulators beyond the Brillouin zone via Chern parity, Phys. Rev. B 76(16), 165307 (2007)
CrossRef ADS Google scholar
[22]
Y. Y. Zhang, R. L. Chu, F. C. Zhang, and S. Q. Shen, Localization and mobility gap in the topological Anderson insulator, Phys. Rev. B 85(3), 035107 (2012)
CrossRef ADS Google scholar
[23]
Z. G. Song, Y. Y. Zhang, J. T. Song, and S. S. Li, Route towards localization for quantum anomalous Hall systems with Chern number 2, Sci. Rep. 6(1), 19018 (2016)
CrossRef ADS Google scholar
[24]
K. Nomura, S. Ryu, M. Koshino, C. Mudry, and A. Furusaki, Quantum Hall effect of massless Dirac fermions in a vanishing magnetic field, Phys. Rev. Lett. 100(24), 246806 (2008)
CrossRef ADS Google scholar
[25]
J. T. Edwards, and D. J. Thouless, Numerical studies of localization in disordered systems, J. Phys. C 5(8), 807 (1972)
CrossRef ADS Google scholar
[26]
J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)
CrossRef ADS Google scholar
[27]
P. A. Khomyakov, G. Brocks, V. Karpan, M. Zwierzycki, and P. J. Kelly, Conductance calculations for quantum wires and interfaces: Mode matching and Green’s functions, Phys. Rev. B 72(3), 035450 (2005)
CrossRef ADS Google scholar
[28]
T. Ando, Quantum point contacts in magnetic fields, Phys. Rev. B 44(15), 8017 (1991)
CrossRef ADS Google scholar
[29]
L. Zhang, Y. Xing, and J. Wang, First-principles investigation of transient dynamics of molecular devices, Phys. Rev. B 86(15), 155438 (2012)
CrossRef ADS Google scholar
[30]
Y. Xing, Q. F. Sun, and J. Wang, Influence of dephasing on the quantum Hall effect and the spin Hall effect, Phys. Rev. B 77(11), 115346 (2008)
CrossRef ADS Google scholar
[31]
T. Fukui and Y. Hatsugai, Quantum spin Hall effect in three dimensional materials: Lattice computation of Z2 topological invariants and its application to Bi and Sb, J. Phys. Soc. Jpn. 76(5), 053702 (2007)
CrossRef ADS Google scholar
[32]
T. Fukui, Y. Hatsugai, and H. Suzuki, Chern numbers in discretized Brillouin zone: Efficient method of computing (spin) Hall conductances, J. Phys. Soc. Jpn. 74(6), 1674 (2005)
CrossRef ADS Google scholar
[33]
T. Fukui and Y. Hatsugai, Topological aspects of the quantum spin-Hall effect in graphene: Z2 topological order and spin Chern number, Phys. Rev. B 75(12), 121403 (2007)
CrossRef ADS Google scholar
[34]
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a twodimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
CrossRef ADS Google scholar
[35]
M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A 392(1802), 45 (1984)
[36]
B. Simon, Holonomy, the quantum adiabatic theorem, and Berry’s phase, Phys. Rev. Lett. 51(24), 2167 (1983)
CrossRef ADS Google scholar
[37]
D. Braun, E. Hofstetter, A. MacKinnon, and G. Montambaux, Level curvatures and conductances: A numerical study of the Thouless relation, Phys. Rev. B 55(12), 7557 (1997)
CrossRef ADS Google scholar
[38]
A. P. Jauho, N. S. Wingreen, and Y. Meir, Timedependent transport in interacting and noninteracting resonant-tunneling systems, Phys. Rev. B 50(8), 5528 (1994)
CrossRef ADS Google scholar
[39]
Y. Xing, J. Wang, and Q. F. Sun, Focusing of electron flow in a bipolar graphene ribbon with different chiralities, Phys. Rev. B 81(16), 165425 (2010)
CrossRef ADS Google scholar
[40]
J. Li and S. Q. Shen, Spin-current-induced charge accumulation and electric current in semiconductor nanostructures with Rashba spin-orbit coupling, Phys. Rev. B 76(15), 153302 (2007)
CrossRef ADS Google scholar
[41]
H. Jiang, L. Wang, Q. F. Sun, and X. C. Xie, Numerical study of the topological Anderson insulator in HgTe/CdTe quantum wells, Phys. Rev. B 80(16), 165316 (2009)
CrossRef ADS Google scholar
[42]
Y. Xing, L. Zhang, and J. Wang, Topological Anderson insulator phenomena, Phys. Rev. B 84(3), 035110 (2011)
CrossRef ADS Google scholar
[43]
D. H. Lee and J. D. Joannopoulos, Simple scheme for surface-band calculations (II): The Green’s function, Phys. Rev. B 23(10), 4997 (1981)
CrossRef ADS Google scholar
[44]
D. H. Lee and J. D. Joannopoulos, Simple scheme for surface-band calculations (I), Phys. Rev. B 23(10), 4988 (1981)
CrossRef ADS Google scholar
[45]
S. Sanvito, C. J. Lambert, J. H. Jefferson, and A. M. Bratkovsky, General Green’s-function formalism for transport calculations with spd Hamiltonians and giant magnetoresistance in Co- and Ni-based magnetic multilayers, Phys. Rev. B 59(18), 11936 (1999)
CrossRef ADS Google scholar
[46]
I. Rungger and S. Sanvito, Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition, Phys. Rev. B 78(3), 035407 (2008)
CrossRef ADS Google scholar
[47]
T. Ando, Electron localization in a two-dimensional system in strong magnetic fields (I): Case of short-range scatterers, J. Phys. Soc. Jpn. 52(5), 1740 (1983)
CrossRef ADS Google scholar
[48]
T. Ando, Electron localization in a two-dimensional system in strong magnetic fields (II): Long-range scatterers and response functions, J. Phys. Soc. Jpn. 53(9), 3101 (1984)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1396 KB)

Accesses

Citations

Detail

Sections
Recommended

/