Dynamics of clustering patterns in the Kuramoto model with unidirectional coupling
Xia Huang, Jin Dong, Wen-Jing Jia, Zhi-Gang Zheng, Can Xu
Dynamics of clustering patterns in the Kuramoto model with unidirectional coupling
We study the synchronization transition in the Kuramoto model by considering a unidirectional coupling with a chain structure. The microscopic clustering features are characterized in the system. We identify several clustering patterns for the long-time evolution of the effective frequencies and reveal the phase transition between them. Theoretically, the recursive approach is developed in order to obtain analytical insights; the essential bifurcation schemes of the clustering patterns are clarified and the phase diagram is illustrated in order to depict the various phase transitions of the system. Furthermore, these recursive theories can be extended to a larger system. Our theoretical analysis is in agreement with the numerical simulations and can aid in understanding the clustering patterns in the Kuramoto model with a general structure.
synchronization / coupled phase oscillators / phase transition
[1] |
A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Vol. 12, Cambridge: Cambridge University Press, 2003
|
[2] |
S. H. Strogatz, Frontiers in Mathematical Biology, Springer, 2012, pp 122–138
|
[3] |
J. A. Mohawk, C. B. Green, and J. S. Takahashi, Central and peripheral circadian clocks in mammals, Annu. Rev. Neurosci. 35(1), 445 (2012)
CrossRef
ADS
Google scholar
|
[4] |
Z. Qu, Y. Shiferaw, and J. N. Weiss, Nonlinear dynamics of cardiac excitation-contraction coupling: an iterated map study, Phys. Rev. E 75(1), 011927 (2007)
CrossRef
ADS
Google scholar
|
[5] |
I. Aihara, Modeling synchronized calling behavior of Japanese tree frogs, Phys. Rev. E 80(1), 011918 (2009)
CrossRef
ADS
Google scholar
|
[6] |
S. H. Strogatz, Sync: How Order Emerges from Chaos in the Universe, Nature and Daily Life, UK: Hachette, 2004
|
[7] |
B. C. Daniels, S. T. M. Dissanayake, and B. R. Trees, Synchronization of coupled rotators: Josephson junction ladders and the locally coupled Kuramoto model, Phys. Rev. E 67(2), 026216 (2003)
CrossRef
ADS
Google scholar
|
[8] |
Y. Kuramoto and H. Araki, Lecture notes in physics, International Symposium on Mathematical Problems in Theoretical Physics, 5 (1975)
|
[9] |
J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, et al., The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77(1), 137 (2005)
CrossRef
ADS
Google scholar
|
[10] |
C. Xu, J. Gao, H. Xiang, W. Jia, S. Guan, and Z. Zheng, Dynamics of phase oscillators with generalized frequency-weighted coupling, Phys. Rev. E 94(6), 062204 (2016)
CrossRef
ADS
Google scholar
|
[11] |
H. Bi, X. Hu, S. Boccaletti, X. Wang, Y. Zou, Z. Liu, and S. Guan, Coexistence of quantized, time dependent, clusters in globally coupled oscillators, Phys. Rev. Lett. 117(20), 204101 (2016)
CrossRef
ADS
Google scholar
|
[12] |
X. Huang, J. Gao, Y. Sun, Z. Zheng, and C. Xu, Effects of frustration on explosive synchronization, Front. Phys. 11(6), 110504 (2016)
CrossRef
ADS
Google scholar
|
[13] |
S. Boccaletti, J. A. Almendral, S. Guan, I. Leyva, Z. Liu, I. Sendiña-Nadal, Z. Wang, and Y. Zou, Explosive transitions in complex networks structure and dynamics: Percolation and synchronization, Phys. Rep. 660, 1 (2016)
CrossRef
ADS
Google scholar
|
[14] |
H. Chen, Y. Sun, J. Gao, Z. Zheng, and C. Xu, Order parameter analysis of synchronization transitions on star networks, Front. Phys. 12(6), 120504 (2017)
CrossRef
ADS
Google scholar
|
[15] |
X. Zhang, X. Hu, J. Kurths, and Z. Liu, Explosive synchronization in a general complex network, Phys. Rev. E 88(1), 010802 (2013)
CrossRef
ADS
Google scholar
|
[16] |
X. Zhang, S. Boccaletti, S. Guan, and Z. Liu, Explosive synchronization in adaptive and multilayer networks, Phys. Rev. Lett. 114(3), 038701 (2015)
CrossRef
ADS
Google scholar
|
[17] |
H. Bi, Y. Li, L. Zhou, and S. Guan, Nontrivial standing wave state in frequency-weighted Kuramoto model, Front. Phys. 12(3), 126801 (2017)
CrossRef
ADS
Google scholar
|
[18] |
T. Qiu, Y. Zhang, J. Liu, H. Bi, S. Boccaletti, Z. Liu, and S. Guan, Landau damping effects in the synchronization of conformist and contrarian oscillators, Sci. Rep. 5(1), 18235 (2016)
CrossRef
ADS
Google scholar
|
[19] |
G. C. Sethia, A. Sen, and F. M. Atay, Clustered chimera states in delay-coupled oscillator systems, Phys. Rev. Lett. 100(14), 144102 (2008)
CrossRef
ADS
Google scholar
|
[20] |
Y. Zhu, Y. Li, M. Zhang, and J. Yang, The oscillating two-cluster chimera state in non-locally coupled phase oscillators, Europhys. Lett. 97(1), 10009 (2012)
CrossRef
ADS
Google scholar
|
[21] |
D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley, Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett. 101(8), 084103 (2008)
CrossRef
ADS
Google scholar
|
[22] |
O. E. Omel’chenko, M. Wolfrum, S. Yanchuk, Y. L. Maistrenko, and O. Sudakov, Stationary patterns of coherence and incoherence in two-dimensional arrays of non-locally-coupled phase oscillators, Phys. Rev. E 85(3), 036210 (2012)
CrossRef
ADS
Google scholar
|
[23] |
J. Sieber, E. Omel’chenko, and M. Wolfrum, Controlling unstable chaos: Stabilizing chimera states by feedback, Phys. Rev. Lett. 112(5), 054102 (2014)
CrossRef
ADS
Google scholar
|
[24] |
B. K. Bera, S. Majhi, D. Ghosh, and M. Perc, Chimera states: Effects of different coupling topologies, Europhys. Lett. 118(1), 10001 (2017)
CrossRef
ADS
Google scholar
|
[25] |
S. Rakshit, B. K. Bera, M. Perc, and D. Ghosh, Basin stability for chimera states, Sci. Rep. 7(1), 2412 (2017)
CrossRef
ADS
Google scholar
|
[26] |
E. Bolhasani, Y. Azizi, A. Valizadeh, and M. Perc, Synchronization of oscillators through timeshifted common inputs, Phys. Rev. E 95(3), 032207 (2017)
CrossRef
ADS
Google scholar
|
[27] |
Q. Wang, Z. Duan, M. Perc, and G. Chen, Synchronization transitions on small-world neuronal networks: Effects of information transmission delay and rewiring probability, Europhys. Lett. 83(5), 50008 (2008)
CrossRef
ADS
Google scholar
|
[28] |
Q. Wang, M. Perc, Z. Duan, and G. Chen, Synchronization transitions on scale-free neuronal networks due to finite information transmission delays, Phys. Rev. E 80(2), 026206 (2009)
CrossRef
ADS
Google scholar
|
[29] |
Y. Wu, J. Xiao, G. Hu, and M. Zhan, Synchronizing large number of nonidentical oscillators with small coupling, Europhys. Lett. 101, 38002 (2013)
|
[30] |
X. Huang, M. Zhan, F. Li, and Z. Zheng, Single clustering synchronization in a ring of Kuramoto oscillators,J. Phys. A 47(12), 125101 (2014)
CrossRef
ADS
Google scholar
|
[31] |
P. F. C. Tilles, F. F. Ferreira, and H. A. Cerdeira, Multistable behavior above synchronization in a locally coupled Kuramoto model, Phys. Rev. E 83(6), 066206 (2011)
CrossRef
ADS
Google scholar
|
[32] |
Y. Zhang and W. Wan, States and transitions in mixed networks, Front. Phys. 9(4), 523 (2014)
CrossRef
ADS
Google scholar
|
[33] |
L. Ren and B. Ermentrout, Phase locking in chains of multiple-coupled oscillators, Physica D 143(1–4), 56 (2000)
CrossRef
ADS
Google scholar
|
[34] |
L. Ren and G. B. Ermentrout, Monotonicity of phaselocked solutions in chains and arrays of nearestneighbour coupled oscillators, SIAM J. Math. Anal. 29(1), 208 (1998)
CrossRef
ADS
Google scholar
|
[35] |
J. A. Rogge and D. Aeyels, Stability of phase locking in a ring of unidirectionally coupled oscillators, J. Phys. Math. Gen. 37(46), 11135 (2004)
CrossRef
ADS
Google scholar
|
[36] |
H. F. El-Nashar and H. A. Cerdeira, Determination of the critical coupling for oscillators in a ring, Chaos 19(3), 033127 (2009)
CrossRef
ADS
Google scholar
|
[37] |
G. B. Ermentrout, The behaviour of rings of coupled oscillators, J. Math. Biol. 23(1), 55 (1985)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |