Dynamics of clustering patterns in the Kuramoto model with unidirectional coupling

Xia Huang, Jin Dong, Wen-Jing Jia, Zhi-Gang Zheng, Can Xu

PDF(2152 KB)
PDF(2152 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 130506. DOI: 10.1007/s11467-018-0783-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Dynamics of clustering patterns in the Kuramoto model with unidirectional coupling

Author information +
History +

Abstract

We study the synchronization transition in the Kuramoto model by considering a unidirectional coupling with a chain structure. The microscopic clustering features are characterized in the system. We identify several clustering patterns for the long-time evolution of the effective frequencies and reveal the phase transition between them. Theoretically, the recursive approach is developed in order to obtain analytical insights; the essential bifurcation schemes of the clustering patterns are clarified and the phase diagram is illustrated in order to depict the various phase transitions of the system. Furthermore, these recursive theories can be extended to a larger system. Our theoretical analysis is in agreement with the numerical simulations and can aid in understanding the clustering patterns in the Kuramoto model with a general structure.

Keywords

synchronization / coupled phase oscillators / phase transition

Cite this article

Download citation ▾
Xia Huang, Jin Dong, Wen-Jing Jia, Zhi-Gang Zheng, Can Xu. Dynamics of clustering patterns in the Kuramoto model with unidirectional coupling. Front. Phys., 2018, 13(5): 130506 https://doi.org/10.1007/s11467-018-0783-1

References

[1]
A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Vol. 12, Cambridge: Cambridge University Press, 2003
[2]
S. H. Strogatz, Frontiers in Mathematical Biology, Springer, 2012, pp 122–138
[3]
J. A. Mohawk, C. B. Green, and J. S. Takahashi, Central and peripheral circadian clocks in mammals, Annu. Rev. Neurosci. 35(1), 445 (2012)
CrossRef ADS Google scholar
[4]
Z. Qu, Y. Shiferaw, and J. N. Weiss, Nonlinear dynamics of cardiac excitation-contraction coupling: an iterated map study, Phys. Rev. E 75(1), 011927 (2007)
CrossRef ADS Google scholar
[5]
I. Aihara, Modeling synchronized calling behavior of Japanese tree frogs, Phys. Rev. E 80(1), 011918 (2009)
CrossRef ADS Google scholar
[6]
S. H. Strogatz, Sync: How Order Emerges from Chaos in the Universe, Nature and Daily Life, UK: Hachette, 2004
[7]
B. C. Daniels, S. T. M. Dissanayake, and B. R. Trees, Synchronization of coupled rotators: Josephson junction ladders and the locally coupled Kuramoto model, Phys. Rev. E 67(2), 026216 (2003)
CrossRef ADS Google scholar
[8]
Y. Kuramoto and H. Araki, Lecture notes in physics, International Symposium on Mathematical Problems in Theoretical Physics, 5 (1975)
[9]
J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, et al., The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77(1), 137 (2005)
CrossRef ADS Google scholar
[10]
C. Xu, J. Gao, H. Xiang, W. Jia, S. Guan, and Z. Zheng, Dynamics of phase oscillators with generalized frequency-weighted coupling, Phys. Rev. E 94(6), 062204 (2016)
CrossRef ADS Google scholar
[11]
H. Bi, X. Hu, S. Boccaletti, X. Wang, Y. Zou, Z. Liu, and S. Guan, Coexistence of quantized, time dependent, clusters in globally coupled oscillators, Phys. Rev. Lett. 117(20), 204101 (2016)
CrossRef ADS Google scholar
[12]
X. Huang, J. Gao, Y. Sun, Z. Zheng, and C. Xu, Effects of frustration on explosive synchronization, Front. Phys. 11(6), 110504 (2016)
CrossRef ADS Google scholar
[13]
S. Boccaletti, J. A. Almendral, S. Guan, I. Leyva, Z. Liu, I. Sendiña-Nadal, Z. Wang, and Y. Zou, Explosive transitions in complex networks structure and dynamics: Percolation and synchronization, Phys. Rep. 660, 1 (2016)
CrossRef ADS Google scholar
[14]
H. Chen, Y. Sun, J. Gao, Z. Zheng, and C. Xu, Order parameter analysis of synchronization transitions on star networks, Front. Phys. 12(6), 120504 (2017)
CrossRef ADS Google scholar
[15]
X. Zhang, X. Hu, J. Kurths, and Z. Liu, Explosive synchronization in a general complex network, Phys. Rev. E 88(1), 010802 (2013)
CrossRef ADS Google scholar
[16]
X. Zhang, S. Boccaletti, S. Guan, and Z. Liu, Explosive synchronization in adaptive and multilayer networks, Phys. Rev. Lett. 114(3), 038701 (2015)
CrossRef ADS Google scholar
[17]
H. Bi, Y. Li, L. Zhou, and S. Guan, Nontrivial standing wave state in frequency-weighted Kuramoto model, Front. Phys. 12(3), 126801 (2017)
CrossRef ADS Google scholar
[18]
T. Qiu, Y. Zhang, J. Liu, H. Bi, S. Boccaletti, Z. Liu, and S. Guan, Landau damping effects in the synchronization of conformist and contrarian oscillators, Sci. Rep. 5(1), 18235 (2016)
CrossRef ADS Google scholar
[19]
G. C. Sethia, A. Sen, and F. M. Atay, Clustered chimera states in delay-coupled oscillator systems, Phys. Rev. Lett. 100(14), 144102 (2008)
CrossRef ADS Google scholar
[20]
Y. Zhu, Y. Li, M. Zhang, and J. Yang, The oscillating two-cluster chimera state in non-locally coupled phase oscillators, Europhys. Lett. 97(1), 10009 (2012)
CrossRef ADS Google scholar
[21]
D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley, Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett. 101(8), 084103 (2008)
CrossRef ADS Google scholar
[22]
O. E. Omel’chenko, M. Wolfrum, S. Yanchuk, Y. L. Maistrenko, and O. Sudakov, Stationary patterns of coherence and incoherence in two-dimensional arrays of non-locally-coupled phase oscillators, Phys. Rev. E 85(3), 036210 (2012)
CrossRef ADS Google scholar
[23]
J. Sieber, E. Omel’chenko, and M. Wolfrum, Controlling unstable chaos: Stabilizing chimera states by feedback, Phys. Rev. Lett. 112(5), 054102 (2014)
CrossRef ADS Google scholar
[24]
B. K. Bera, S. Majhi, D. Ghosh, and M. Perc, Chimera states: Effects of different coupling topologies, Europhys. Lett. 118(1), 10001 (2017)
CrossRef ADS Google scholar
[25]
S. Rakshit, B. K. Bera, M. Perc, and D. Ghosh, Basin stability for chimera states, Sci. Rep. 7(1), 2412 (2017)
CrossRef ADS Google scholar
[26]
E. Bolhasani, Y. Azizi, A. Valizadeh, and M. Perc, Synchronization of oscillators through timeshifted common inputs, Phys. Rev. E 95(3), 032207 (2017)
CrossRef ADS Google scholar
[27]
Q. Wang, Z. Duan, M. Perc, and G. Chen, Synchronization transitions on small-world neuronal networks: Effects of information transmission delay and rewiring probability, Europhys. Lett. 83(5), 50008 (2008)
CrossRef ADS Google scholar
[28]
Q. Wang, M. Perc, Z. Duan, and G. Chen, Synchronization transitions on scale-free neuronal networks due to finite information transmission delays, Phys. Rev. E 80(2), 026206 (2009)
CrossRef ADS Google scholar
[29]
Y. Wu, J. Xiao, G. Hu, and M. Zhan, Synchronizing large number of nonidentical oscillators with small coupling, Europhys. Lett. 101, 38002 (2013)
[30]
X. Huang, M. Zhan, F. Li, and Z. Zheng, Single clustering synchronization in a ring of Kuramoto oscillators,J. Phys. A 47(12), 125101 (2014)
CrossRef ADS Google scholar
[31]
P. F. C. Tilles, F. F. Ferreira, and H. A. Cerdeira, Multistable behavior above synchronization in a locally coupled Kuramoto model, Phys. Rev. E 83(6), 066206 (2011)
CrossRef ADS Google scholar
[32]
Y. Zhang and W. Wan, States and transitions in mixed networks, Front. Phys. 9(4), 523 (2014)
CrossRef ADS Google scholar
[33]
L. Ren and B. Ermentrout, Phase locking in chains of multiple-coupled oscillators, Physica D 143(1–4), 56 (2000)
CrossRef ADS Google scholar
[34]
L. Ren and G. B. Ermentrout, Monotonicity of phaselocked solutions in chains and arrays of nearestneighbour coupled oscillators, SIAM J. Math. Anal. 29(1), 208 (1998)
CrossRef ADS Google scholar
[35]
J. A. Rogge and D. Aeyels, Stability of phase locking in a ring of unidirectionally coupled oscillators, J. Phys. Math. Gen. 37(46), 11135 (2004)
CrossRef ADS Google scholar
[36]
H. F. El-Nashar and H. A. Cerdeira, Determination of the critical coupling for oscillators in a ring, Chaos 19(3), 033127 (2009)
CrossRef ADS Google scholar
[37]
G. B. Ermentrout, The behaviour of rings of coupled oscillators, J. Math. Biol. 23(1), 55 (1985)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2152 KB)

Accesses

Citations

Detail

Sections
Recommended

/