Negative refraction based on purely imaginary metamaterials

Yang-Yang Fu, Ya-Dong Xu, Huan-Yang Chen

PDF(7749 KB)
PDF(7749 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 134206. DOI: 10.1007/s11467-018-0781-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Negative refraction based on purely imaginary metamaterials

Author information +
History +

Abstract

By introducing a new mechanism based on purely imaginary metamaterials (PIMs), we reveal that bidirectional negative refraction and planar focusing can be obtained using a pair of PIM slabs, overcoming the unidirectional limit in parity-time (PT)-symmetric systems. Compared with PT-symmetric systems, which require two different types of materials, the proposed negative refraction can be realized using two identical media. In addition, asymmetric excitation with bidirectional total transmission is observed in our PIM system. Therefore, a new way to realize negative refraction with properties that are unavailable in PT-symmetric systems is presented.

Keywords

negative refraction / coherent perfect absorber / laser / purely imaginary metamaterials

Cite this article

Download citation ▾
Yang-Yang Fu, Ya-Dong Xu, Huan-Yang Chen. Negative refraction based on purely imaginary metamaterials. Front. Phys., 2018, 13(4): 134206 https://doi.org/10.1007/s11467-018-0781-3

References

[1]
V. G. Veselago, The electrodynamics of substances with simultaneously negative values of εand m, Sov. Phys. Usp. 10(4), 509 (1968)
CrossRef ADS Google scholar
[2]
J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85(18), 3966 (2000)
CrossRef ADS Google scholar
[3]
S. Xi, H. Chen, T. Jiang, L. Ran, J. Huangfu, B. I. Wu, J. A. Kong, and M. Chen, Experimental verification of reversed Cherenkov radiation in left-handed metamaterial, Phys. Rev. Lett. 103(19), 194801 (2009)
CrossRef ADS Google scholar
[4]
P. R. Berman, Goos–Hänchen shift in negatively refractive media, Phys. Rev. E 66(6), 067603 (2002)
CrossRef ADS Google scholar
[5]
R. A. Shelby, D. R. Smith, and S. Schultz, Experimental verification of a negative index of refraction, Science 292(5514), 77 (2001)
CrossRef ADS Google scholar
[6]
A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, Negative refraction in semiconductor metamaterials, Nat. Mater. 6(12), 946 (2007)
CrossRef ADS Google scholar
[7]
J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, Optical negative refraction in bulk metamaterials of nanowires, Science 321(5891), 930 (2008)
CrossRef ADS Google scholar
[8]
S. Zhang, Y. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, Negative refractive index in chiral metamaterials, Phys. Rev. Lett. 102(2), 023901 (2009)
CrossRef ADS Google scholar
[9]
C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, All-angle negative refraction without negative effective index, Phys. Rev. B 65(20), 201104 (2002)
CrossRef ADS Google scholar
[10]
E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Negative refraction by photonic crystals, Nature 423(6940), 604 (2003)
CrossRef ADS Google scholar
[11]
Y. Xie, W. Wang, H. Chen, A. Konneker, B. Popa, and S. A. Cummer, Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface, Nat. Commun. 5, 5553 (2014)
CrossRef ADS Google scholar
[12]
Y. Xu, Y. Fu, and H. Chen, Steering light by a subwavelength metallic grating from transformation optics, Sci. Rep. 5(1), 12219 (2015)
CrossRef ADS Google scholar
[13]
S. Maslovski and S. Tretyakov, Phase conjugation and perfect lensing, J. Appl. Phys. 94(7), 4241 (2003)
CrossRef ADS Google scholar
[14]
P. Chen and A. Alù, Subwavelength imaging using phase-conjugating nonlinear nanoantenna arrays, Nano Lett. 11(12), 5514 (2011)
CrossRef ADS Google scholar
[15]
J. B. Pendry, Time reversal and negative refraction, Science 322(5898), 71 (2008)
CrossRef ADS Google scholar
[16]
S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, Optical negative refraction by four-wave mixing in thin metallic nanostructures, Nat. Mater. 11(1), 34 (2012)
CrossRef ADS Google scholar
[17]
Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, Unidirectional invisibility induced by PT-symmetric periodic structures, Phys. Rev. Lett. 106(21), 213901 (2011)
CrossRef ADS Google scholar
[18]
S. Longhi, PT-symmetric laser absorber, Phys. Rev. A 82(3), 031801 (2010)
CrossRef ADS Google scholar
[19]
Y. D. Chong, L. Ge, and A. D. Stone, Coherent perfect absorbers: Time-reversed lasers, Phys. Rev. Lett. 106, 093902 (2011)
CrossRef ADS Google scholar
[20]
Y. Sun, W. Tan, H. Q. Li, J. Li, and H. Chen, Experimental demonstration of a coherent perfect absorber with PT phase transition, Phys. Rev. Lett. 112(14), 143903 (2014)
CrossRef ADS Google scholar
[21]
X. Zhu, L. Feng, P. Zhang, X. Yin, and X. Zhang, Oneway invisible cloak using parity-time symmetric transformation optics, Opt. Lett. 38(15), 2821 (2013)
CrossRef ADS Google scholar
[22]
X. Zhu, Y. Peng, and D. Zhao, Anisotropic reflection oscillation in periodic multilayer structures of paritytime symmetry, Opt. Express 22(15), 18401 (2014)
CrossRef ADS Google scholar
[23]
X. Zhu, Defect states and exceptional point splitting in the band gaps of one-dimensional parity-time lattices, Opt. Express 23(17), 22274 (2015)
CrossRef ADS Google scholar
[24]
Y. Fu, Y. Xu, and H. Y. Chen, Zero index metamaterials with PT symmetry in a waveguide system, Opt. Express 24(2), 1648 (2016)
CrossRef ADS Google scholar
[25]
Y. Wu, B. Zhu, S. F. Hu, Z. Zhou, and H. Zhong, Floquet control of the gain and loss in a PT-symmetric optical coupler, Front. Phys. 12(1), 121102 (2017)
CrossRef ADS Google scholar
[26]
R. Fleury, D. L. Sounas, and A. Alù, Negative refraction and planar focusing based on parity-time symmetric metasurfaces, Phys. Rev. Lett. 113(2), 023903 (2014)
CrossRef ADS Google scholar
[27]
X. Zhu, H. Ramezani, C. Shi, J. Zhu, and X. Zhang, PTsymmetric acoustics, Phys. Rev. X 4(3), 031042 (2014)
CrossRef ADS Google scholar
[28]
Y. Fu, X. Zhang, Y. Xu, and H. Chen, Design of zero index metamaterials with PT symmetry using epsilonnear-zero media with defects, J. Appl. Phys. 121(9), 094503 (2017)
CrossRef ADS Google scholar
[29]
D. Dragoman, Complex conjugate media: Alternative configurations for miniaturized lasers, Opt. Commun. 284(8), 2095 (2011)
CrossRef ADS Google scholar
[30]
A. Basiri, I. Vitebskiy, and T. Kottos, Light scattering in pseudopassive media with uniformly balanced gain and loss, Phys. Rev. A 91(6), 063843 (2015)
CrossRef ADS Google scholar
[31]
S. Xiao, J. Gear, S. Rotter, and J. Li, Effective PTsymmetric metasurfaces for subwavelength amplified sensing, New J. Phys. 18(8), 085004 (2016)
CrossRef ADS Google scholar
[32]
P. Bai, K. Ding, G. Wang, J. Luo, Z. Zhang, C. T. Chan, Y. Wu, and Y. Lai, Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss, Phys. Rev. A 94(6), 063841 (2016)
CrossRef ADS Google scholar
[33]
Y. Xu, Y. Fu, and H. Chen, Electromagnetic wave propagations in conjugate metamaterials, Opt. Express 25(5), 4952 (2017)
CrossRef ADS Google scholar
[34]
Y. Fu, Y. Cao, S. A. Cummer, Y. Xu, and H. Chen, Coherent perfect absorber and laser modes in purely imaginary metamaterials, Phys. Rev. A 96(4), 043838 (2017)
CrossRef ADS Google scholar
[35]
Y. Fu, Y. Xu, H. Chen, and S. A. Cummer, Coherent perfect absorption and laser modes in a cylindrical structure of conjugate metamaterials, New J. Phys. 20(1), 013015 (2018)
CrossRef ADS Google scholar
[36]
F. Monticone, C. A. Valagiannopoulos, and A. Alù, Parity-time symmetric nonlocal metasurfaces: All-angle negative refraction and volumetric imaging, Phys. Rev. X 6(4), 041018 (2016)
CrossRef ADS Google scholar
[37]
Y. Fu and Y. Xu, Asymmetric effects in waveguide systems using PT symmetry and zero index metamaterials, Sci. Rep. 7(1), 12476 (2017)
CrossRef ADS Google scholar
[38]
Z. J. Wong, Y. L. Xu, J. Kim, K. O’Brien, Y. Wang, L. Feng, and X. Zhang, Lasing and anti-lasing in a single cavity, Nat. Photonics 10(12), 796 (2016)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(7749 KB)

Accesses

Citations

Detail

Sections
Recommended

/