Reconceptualizing kinesin’s working cycle as separate chemical and mechanical processes

Hui-Juan Xu, Tong Tong, Rui-Zheng Hou, Hong-Rong Li

PDF(1211 KB)
PDF(1211 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 138206. DOI: 10.1007/s11467-018-0776-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Reconceptualizing kinesin’s working cycle as separate chemical and mechanical processes

Author information +
History +

Abstract

The biomolecular motor kinesin uses chemical energy released from a fuel reaction to generate directional movement and produce mechanical work. The underlying physical mechanism is not fully understood yet. To analyze the energetics of the motor, we reconceptualize its chemomechanical cycle in terms of separate fuel reaction and work production processes and introduce a thermodynamic constraint to optimize the cycle. The model predicts that the load dependences of the motor’s velocity, stepping ratio, and dwell time are determined by the mechanical parameters of the motor–track system rather than the fuel reaction rate. This behavior is verified using reported experimental data from wild-type and elongated kinesins. The fuel reaction and work production processes indicate that kinesin is driven by switching between two chemical states, probably following a general pattern for molecular motors. The comparison with experimental data indicates that the fuel reaction processes are close to adiabatic, which is important for efficient operation of the motor. The model also suggests that a soft, short neck linker is important for the motor to maintain its load transport velocity.

Keywords

kinesin / chemomechanical coupling / thermodynamics / entropy production

Cite this article

Download citation ▾
Hui-Juan Xu, Tong Tong, Rui-Zheng Hou, Hong-Rong Li. Reconceptualizing kinesin’s working cycle as separate chemical and mechanical processes. Front. Phys., 2018, 13(5): 138206 https://doi.org/10.1007/s11467-018-0776-0

References

[1]
R. D. Vale and R. A. Milligan, The way things move: Looking under the hood of molecular motor proteins, Science 288(5463), 88 (2000)
CrossRef ADS Google scholar
[2]
R. D. Vale, The molecular motor toolbox for intracellular transport, Cell 112(4), 467 (2003)
CrossRef ADS Google scholar
[3]
S. Rice, A. W. Lin, D. Safer, C. L. Hart, N. Naber, B. O. Carragher, S. M. Cain, E. Pechatnikova, E. M. Wilson-Kubalek, M. Whittaker, E. Pate, R. Cooke, E. W. Taylor, R. A. Milligan, and R. D. Vale, A structural change in the kinesin motor protein that drives motility, Nature 402(6763), 778 (1999)
CrossRef ADS Google scholar
[4]
S. Rice, Y. Cui, C. Sindelar, N. Naber, M. Matuska, R. Vale, and R. Cooke, Thermodynamics properties of the kinesin neck-region docking to the catalytic core, Biophys. J. 84(3), 1844 (2003)
CrossRef ADS Google scholar
[5]
K. Visscher, M. J. Schnitzer, and S. M. Block, Single kinesin molecules studied with a molecular force clamp, Nature 400(6740), 184 (1999)
CrossRef ADS Google scholar
[6]
N. J. Carter and R. A. Cross, Mechanics of the kinesin step, Nature 435(7040), 308 (2005)
CrossRef ADS Google scholar
[7]
M. Nishiyama, H. Higuchi, and T. Yanagida, Chemomechanical coupling of the forward and backward steps of single kinesin molecules, Nat. Cell Biol. 4(10), 790 (2002)
CrossRef ADS Google scholar
[8]
Y. Taniguchi, M. Nishiyama, Y. Ishii, and T. Yanagida, Entropy rectifies the Brownian steps of kinesin, Nat. Chem. Biol. 1(6), 342 (2005)
CrossRef ADS Google scholar
[9]
M. J. Schnitzer, K. Visscher, and S. M. Block, Force production by single kinesin motors, Nat. Cell Biol. 2(10), 718 (2000)
CrossRef ADS Google scholar
[10]
S. Liepelt and R. Lipowsky, Kinesin’s network of chemomechanical motor cycles, Phys. Rev. Lett. 98(25), 258102 (2007)
CrossRef ADS Google scholar
[11]
S. Liepelt and R. Lipowsky, Steady-state balance conditions for molecular motor cycles and stochastic nonequilibrium processes, EPL 77(5), 50002 (2007)
CrossRef ADS Google scholar
[12]
Z. S. Wang, M. Feng, W. W. Zheng, and D. G. Fan, Kinesin is an evolutionarily fine-tuned molecular ratchetand- pawl device of decisively locked directionality, Biophys. J. 93(10), 3363 (2007)
CrossRef ADS Google scholar
[13]
D. G. Fan, W. W. Zheng, R. Hou, F. Li, and Z. S. Wang, Modelling motility of the kinesin dimer from molecular properties of individual monomers, Biochemistry 47(16), 4733 (2008)
CrossRef ADS Google scholar
[14]
R. D. Astumian, Thermodynamics and kinetics of molecular motors, Biophys. J. 98(11), 2401 (2010)
CrossRef ADS Google scholar
[15]
R. D. Astumian, Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines, Biophys. J. 108(2), 291 (2015)
CrossRef ADS Google scholar
[16]
J. Ren, Detectable states, cycle fluxes, and motility scaling of molecular motor kinesin: An integrative kinetic graph theory analysis, Front. Phys. 12(6), 120505 (2017)
CrossRef ADS Google scholar
[17]
B. E. Clancy, W. M. Behnke-Parks, J. O. L. Andreasson, S. S. Rosenfeld, and S. M. Block, A universal pathway for kinesin stepping, Nat. Struct. Mol. Biol. 18(9), 1020 (2011)
CrossRef ADS Google scholar
[18]
R. A. Cross, The kinetic mechanism of kinesin, Trends Biochem. Sci. 29(6), 301 (2004)
CrossRef ADS Google scholar
[19]
B. Milic, J. O. L. Andreasson, W. O. Hancock, and S. M. Block, Kinesin processivity is gated by phosphate release, Proc. Natl. Acad. Sci. USA 111(39), 14136 (2014)
CrossRef ADS Google scholar
[20]
K. J. Mickolajczyk, N. C. Deffenbaugh, J. Ortega Arroyo, J. Andrecka, P. Kukura, and W. O. Hancock, Kinetics of nucleotide-dependent structural transitions in the kinesin-1 hydrolysis cycle, Proc. Natl. Acad. Sci. USA 112(52), E7186 (2015)
CrossRef ADS Google scholar
[21]
G. Y. Chen, D. F. J. Arginteanu, and W. O. Hancock, Processivity of the kinesin-2 KIF3A results from rear head gating and not front head gating, J. Biol. Chem. 290(16), 10274 (2015)
CrossRef ADS Google scholar
[22]
A. Efremov and Z. S. Wang, Universal optimal working cycles of molecular motors, Phys. Chem. Chem. Phys. 13(13), 6223 (2011)
CrossRef ADS Google scholar
[23]
U. Seifert, Entropy production along a stochastic trajectory and an integral fluctuation theorem, Phys. Rev. Lett. 95(4), 040602 (2005)
CrossRef ADS Google scholar
[24]
J. Schnakenberg, Network theory of microscopic and macroscopic behavior of master equation systems, Rev. Mod. Phys. 48(4), 571 (1976)
CrossRef ADS Google scholar
[25]
M. Rubinstein and R. H. Colby, Polymer Physics, Oxford: Oxford University Press, 2003
[26]
I. Schwaiger, C. Sattler, D. R. Hostetter, and M. Rief, The myosin coiled-coil is a truly elastic protein structure, Nat. Mater. 1(4), 232 (2002)
CrossRef ADS Google scholar
[27]
R. Yasuda, H. Noji, K. Jr Kinosita, and M. Yoshida, F1− ATPase is a highly efficient molecular motor that rotates with discrete 120° steps, Cell 93(7), 1117 (1998)
CrossRef ADS Google scholar
[28]
S. Toyabe, T. Watanabe-Nakayama, T. Okamoto, S. Kudo, and E. Muneyuki, Thermodynamic efficiency and mechanochemical coupling of F-1-ATPase, Proc. Natl. Acad. Sci. USA 108(44), 17951 (2011)
CrossRef ADS Google scholar
[29]
S. Toyabe and E. Muneyuki, Single molecule thermodynamics of ATP synthesis by F-1-ATPase, New J. Phys. 17(1), 015008 (2015)
CrossRef ADS Google scholar
[30]
R. Z. Hou and Z. S. Wang, Role of directional fidelity in multiple aspects of extreme performance of the F-1- ATPase motor, Phys. Rev. E 88(2), 022703 (2013)
CrossRef ADS Google scholar
[31]
Z. S. Wang, R. Z. Hou, and A. Efremov, Directional fidelity of nanoscale motors and particles is limited by the 2nd law of thermodynamics-Via a universal equality, J. Chem. Phys. 139(3), 035105 (2013)
CrossRef ADS Google scholar
[32]
Z. S. Wang, Synergic mechanism and fabrication target for bipedal nanomotors, Proc. Natl. Acad. Sci. USA 104(46), 17921 (2007)
CrossRef ADS Google scholar
[33]
J. Cheng, S. Sreelatha, R. Z. Hou, A. Efremov, R. C. Liu, J. R. C. van der Maarel, and Z. S. Wang, Bipedal nanowalker by pure physical mechanisms, Phys. Rev. Lett. 109(23), 238104 (2012)
CrossRef ADS Google scholar
[34]
M. H. Liu, R. Z. Hou, J. Cheng, L. Y. Loh, S. Sreelatha, J. N. Tey, J. Wei, and Z. S. Wang, Autonomous synergic control of nanomotors, ACS Nano 8(2), 1792 (2014)
CrossRef ADS Google scholar
[35]
I. Y. Loh, J. Cheng, S. R. Tee, A. Efremov, and Z. Wang, From bistate molecular switches to self-directed trackwalking nanomotors, ACS Nano 8(10), 10293 (2014)
CrossRef ADS Google scholar
[36]
R. Hou, I. Y. Loh, H. Li, and Z. Wang, Mechanicalkinetic modeling of a molecular walker from a modular design principle, Phys. Rev. Appl. 7(2), 024020 (2017)
CrossRef ADS Google scholar
[37]
R. D. Astumian, Thermodynamics and kinetics of a Brownian motor, Science 276(5314), 917 (1997)
CrossRef ADS Google scholar
[38]
S. Uemura, H. Higuchi, A. O. Olivares, E. M. De La Cruz, and S. Ishiwata, Mechanochemical coupling of two substeps in a single myosin V motor, Nat. Struct. Mol. Biol. 11(9), 877 (2004)
CrossRef ADS Google scholar
[39]
N. Soga, K. Kimura, M. Jr Kinosita, Yoshida, and T. Suzuki, Perfect chemomechanical coupling of FoF1-ATP synthase, Proc. Natl. Acad. Sci. USA 114(19), 4960 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1211 KB)

Accesses

Citations

Detail

Sections
Recommended

/