Quantifying the quantumness of ensembles via unitary similarity invariant norms
Xian-Fei Qi, Ting Gao, Feng-Li Yan
Quantifying the quantumness of ensembles via unitary similarity invariant norms
The quantification of the quantumness of a quantum ensemble has theoretical and practical significance in quantum information theory. We propose herein a class of measures of the quantumness of quantum ensembles using the unitary similarity invariant norms of the commutators of the constituent density operators of an ensemble. Rigorous proof shows that they share desirable properties for a measure of quantumness, such as positivity, unitary invariance, concavity under probabilistic union, convexity under state decomposition, decreasing under coarse graining, and increasing under fine graining. Several specific examples illustrate the applications of these measures of quantumness in studying quantum information.
the quantumness of quantum ensemble / measures of quantumness of quantum ensembles / unitary similarity invariant norms
[1] |
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2010
CrossRef
ADS
Google scholar
|
[2] |
L. Diósi, A Short Course in Quantum Information Theory: An Approach from Theoretical Physics, 2nd Ed., Berlin Heidelberg:Springer-Verlag, 2011
CrossRef
ADS
Google scholar
|
[3] |
S. Massar and S. Popescu, Optimal extraction of information from finite quantum ensembles, Phys. Rev. Lett. 74(8), 1259 (1995)
CrossRef
ADS
Google scholar
|
[4] |
C. A. Fuchs, Just two nonorthogonal quantum states, Quantum Communication, Computing, and Measurement2, 11–16, Boston: Springer, 2002
|
[5] |
C. A. Fuchs and M. Sasaki, Squeezing quantum information through a classical channel: Measuring the quantumness of a set of quantum states, Quantum Inf. Comput. 3, 377 (2003)
|
[6] |
C. A. Fuchs and M. Sasaki, The quantumness of a set of quantum states, arXiv: quant-ph/0302108
|
[7] |
M. Horodecki, P. Horodecki, R. Horodecki, and M. Piani, Quantumness of ensemble from no-broadcasting principle, Int. J. Quant. Inf. 04(01), 105 (2006)
CrossRef
ADS
Google scholar
|
[8] |
O. Oreshkov and J. Calsamiglia, Distinguishability measures between ensembles of quantum states, Phys. Rev. A 79(3), 032336 (2009)
CrossRef
ADS
Google scholar
|
[9] |
X. Zhu, S. Pang, S. Wu, and Q. Liu, The classicality and quantumness of a quantum ensemble, Phys. Lett. A 375(18), 1855 (2011)
CrossRef
ADS
Google scholar
|
[10] |
T. Ma, M. J. Zhao, Y. K. Wang, and S. M. Fei, Noncommutativity and local indistinguishability of quantum states, Sci. Rep. 4, 6336 (2014)
CrossRef
ADS
Google scholar
|
[11] |
S. Luo, N. Li, and X. Cao, Relative entropy between quantum ensembles, Period. Math. Hung. 59(2), 223 (2009)
CrossRef
ADS
Google scholar
|
[12] |
S. Luo, N. Li, and W. Sun, How quantum is a quantum ensemble, Quantum Inform. Process. 9(6), 711 (2010)
CrossRef
ADS
Google scholar
|
[13] |
S. Luo, N. Li, and S. Fu, Quantumness of quantum ensembles, Theor. Math. Phys. 169(3), 1724 (2011)
CrossRef
ADS
Google scholar
|
[14] |
N. Li, S. Luo, and Y. Mao, Quantifying the quantumness of ensembles, Phys. Rev. A 96(2), 022132 (2017)
CrossRef
ADS
Google scholar
|
[15] |
B. Dakić, V. Vedral, and Č. Brukner, Necessary and sufficient condition for nonzero quantum discord, Phys. Rev. Lett. 105(19), 190502 (2010)
CrossRef
ADS
Google scholar
|
[16] |
S. Luo and S. Fu, Measurement-induced nonlocality, Phys. Rev. Lett. 106(12), 120401 (2011)
CrossRef
ADS
Google scholar
|
[17] |
M. L. Hu and H. Fan, Measurement-induced nonlocality based on trace norm, New J. Phys. 17(3), 033004 (2015)
CrossRef
ADS
Google scholar
|
[18] |
X. Zhan, Matrix Theory, Graduate Studies in Mathematics Vol. 147, American Mathematical Society, Providence, Rhode Island, 2013
|
[19] |
Y. Peng, Y. Jiang, and H. Fan, Maximally coherent states and coherence-preserving operations, Phys. Rev. A 93(3), 032326 (2016)
CrossRef
ADS
Google scholar
|
[20] |
T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying coherence, Phys. Rev. Lett. 113(14), 140401 (2014)
CrossRef
ADS
Google scholar
|
[21] |
X. Yuan, H. Zhou, Z. Cao, and X. Ma, Intrinsic randomness as a measure of quantum coherence, Phys. Rev. A 92(2), 022124 (2015)
CrossRef
ADS
Google scholar
|
[22] |
X. F. Qi, T. Gao, and F. L. Yan, Measuring coherence with entanglement concurrence, J. Phys. A Math. Theor. 50(28), 285301 (2017)
CrossRef
ADS
Google scholar
|
[23] |
S. Hill and W. K. Wootters, Entanglement of a pair of quantum bits, Phys. Rev. Lett. 78(26), 5022 (1997)
CrossRef
ADS
Google scholar
|
[24] |
W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80(10), 2245 (1998)
CrossRef
ADS
Google scholar
|
[25] |
H. Ollivier and W. H. Zurek, Quantum discord: A measure of the quantumness of correlations, Phys. Rev. Lett. 88(1), 017901 (2001)
CrossRef
ADS
Google scholar
|
[26] |
L. Henderson and V. Vedral, Classical, quantum and total correlations, J. Phys. A Math. Gen. 34(35), 6899 (2001)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |