Quantifying the quantumness of ensembles via unitary similarity invariant norms

Xian-Fei Qi, Ting Gao, Feng-Li Yan

PDF(142 KB)
PDF(142 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 130309. DOI: 10.1007/s11467-018-0773-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Quantifying the quantumness of ensembles via unitary similarity invariant norms

Author information +
History +

Abstract

The quantification of the quantumness of a quantum ensemble has theoretical and practical significance in quantum information theory. We propose herein a class of measures of the quantumness of quantum ensembles using the unitary similarity invariant norms of the commutators of the constituent density operators of an ensemble. Rigorous proof shows that they share desirable properties for a measure of quantumness, such as positivity, unitary invariance, concavity under probabilistic union, convexity under state decomposition, decreasing under coarse graining, and increasing under fine graining. Several specific examples illustrate the applications of these measures of quantumness in studying quantum information.

Keywords

the quantumness of quantum ensemble / measures of quantumness of quantum ensembles / unitary similarity invariant norms

Cite this article

Download citation ▾
Xian-Fei Qi, Ting Gao, Feng-Li Yan. Quantifying the quantumness of ensembles via unitary similarity invariant norms. Front. Phys., 2018, 13(4): 130309 https://doi.org/10.1007/s11467-018-0773-3

References

[1]
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2010
CrossRef ADS Google scholar
[2]
L. Diósi, A Short Course in Quantum Information Theory: An Approach from Theoretical Physics, 2nd Ed., Berlin Heidelberg:Springer-Verlag, 2011
CrossRef ADS Google scholar
[3]
S. Massar and S. Popescu, Optimal extraction of information from finite quantum ensembles, Phys. Rev. Lett. 74(8), 1259 (1995)
CrossRef ADS Google scholar
[4]
C. A. Fuchs, Just two nonorthogonal quantum states, Quantum Communication, Computing, and Measurement2, 11–16, Boston: Springer, 2002
[5]
C. A. Fuchs and M. Sasaki, Squeezing quantum information through a classical channel: Measuring the quantumness of a set of quantum states, Quantum Inf. Comput. 3, 377 (2003)
[6]
C. A. Fuchs and M. Sasaki, The quantumness of a set of quantum states, arXiv: quant-ph/0302108
[7]
M. Horodecki, P. Horodecki, R. Horodecki, and M. Piani, Quantumness of ensemble from no-broadcasting principle, Int. J. Quant. Inf. 04(01), 105 (2006)
CrossRef ADS Google scholar
[8]
O. Oreshkov and J. Calsamiglia, Distinguishability measures between ensembles of quantum states, Phys. Rev. A 79(3), 032336 (2009)
CrossRef ADS Google scholar
[9]
X. Zhu, S. Pang, S. Wu, and Q. Liu, The classicality and quantumness of a quantum ensemble, Phys. Lett. A 375(18), 1855 (2011)
CrossRef ADS Google scholar
[10]
T. Ma, M. J. Zhao, Y. K. Wang, and S. M. Fei, Noncommutativity and local indistinguishability of quantum states, Sci. Rep. 4, 6336 (2014)
CrossRef ADS Google scholar
[11]
S. Luo, N. Li, and X. Cao, Relative entropy between quantum ensembles, Period. Math. Hung. 59(2), 223 (2009)
CrossRef ADS Google scholar
[12]
S. Luo, N. Li, and W. Sun, How quantum is a quantum ensemble, Quantum Inform. Process. 9(6), 711 (2010)
CrossRef ADS Google scholar
[13]
S. Luo, N. Li, and S. Fu, Quantumness of quantum ensembles, Theor. Math. Phys. 169(3), 1724 (2011)
CrossRef ADS Google scholar
[14]
N. Li, S. Luo, and Y. Mao, Quantifying the quantumness of ensembles, Phys. Rev. A 96(2), 022132 (2017)
CrossRef ADS Google scholar
[15]
B. Dakić, V. Vedral, and Č. Brukner, Necessary and sufficient condition for nonzero quantum discord, Phys. Rev. Lett. 105(19), 190502 (2010)
CrossRef ADS Google scholar
[16]
S. Luo and S. Fu, Measurement-induced nonlocality, Phys. Rev. Lett. 106(12), 120401 (2011)
CrossRef ADS Google scholar
[17]
M. L. Hu and H. Fan, Measurement-induced nonlocality based on trace norm, New J. Phys. 17(3), 033004 (2015)
CrossRef ADS Google scholar
[18]
X. Zhan, Matrix Theory, Graduate Studies in Mathematics Vol. 147, American Mathematical Society, Providence, Rhode Island, 2013
[19]
Y. Peng, Y. Jiang, and H. Fan, Maximally coherent states and coherence-preserving operations, Phys. Rev. A 93(3), 032326 (2016)
CrossRef ADS Google scholar
[20]
T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying coherence, Phys. Rev. Lett. 113(14), 140401 (2014)
CrossRef ADS Google scholar
[21]
X. Yuan, H. Zhou, Z. Cao, and X. Ma, Intrinsic randomness as a measure of quantum coherence, Phys. Rev. A 92(2), 022124 (2015)
CrossRef ADS Google scholar
[22]
X. F. Qi, T. Gao, and F. L. Yan, Measuring coherence with entanglement concurrence, J. Phys. A Math. Theor. 50(28), 285301 (2017)
CrossRef ADS Google scholar
[23]
S. Hill and W. K. Wootters, Entanglement of a pair of quantum bits, Phys. Rev. Lett. 78(26), 5022 (1997)
CrossRef ADS Google scholar
[24]
W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80(10), 2245 (1998)
CrossRef ADS Google scholar
[25]
H. Ollivier and W. H. Zurek, Quantum discord: A measure of the quantumness of correlations, Phys. Rev. Lett. 88(1), 017901 (2001)
CrossRef ADS Google scholar
[26]
L. Henderson and V. Vedral, Classical, quantum and total correlations, J. Phys. A Math. Gen. 34(35), 6899 (2001)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(142 KB)

Accesses

Citations

Detail

Sections
Recommended

/