Quantifying the quantumness of ensembles via unitary similarity invariant norms

Xian-Fei Qi , Ting Gao , Feng-Li Yan

Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 130309

PDF (142KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 130309 DOI: 10.1007/s11467-018-0773-3
RESEARCH ARTICLE

Quantifying the quantumness of ensembles via unitary similarity invariant norms

Author information +
History +
PDF (142KB)

Abstract

The quantification of the quantumness of a quantum ensemble has theoretical and practical significance in quantum information theory. We propose herein a class of measures of the quantumness of quantum ensembles using the unitary similarity invariant norms of the commutators of the constituent density operators of an ensemble. Rigorous proof shows that they share desirable properties for a measure of quantumness, such as positivity, unitary invariance, concavity under probabilistic union, convexity under state decomposition, decreasing under coarse graining, and increasing under fine graining. Several specific examples illustrate the applications of these measures of quantumness in studying quantum information.

Keywords

the quantumness of quantum ensemble / measures of quantumness of quantum ensembles / unitary similarity invariant norms

Cite this article

Download citation ▾
Xian-Fei Qi, Ting Gao, Feng-Li Yan. Quantifying the quantumness of ensembles via unitary similarity invariant norms. Front. Phys., 2018, 13(4): 130309 DOI:10.1007/s11467-018-0773-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2010

[2]

L. Diósi, A Short Course in Quantum Information Theory: An Approach from Theoretical Physics, 2nd Ed., Berlin Heidelberg:Springer-Verlag, 2011

[3]

S. Massar and S. Popescu, Optimal extraction of information from finite quantum ensembles, Phys. Rev. Lett. 74(8), 1259 (1995)

[4]

C. A. Fuchs, Just two nonorthogonal quantum states, Quantum Communication, Computing, and Measurement2, 11–16, Boston: Springer, 2002

[5]

C. A. Fuchs and M. Sasaki, Squeezing quantum information through a classical channel: Measuring the quantumness of a set of quantum states, Quantum Inf. Comput. 3, 377 (2003)

[6]

C. A. Fuchs and M. Sasaki, The quantumness of a set of quantum states, arXiv: quant-ph/0302108

[7]

M. Horodecki, P. Horodecki, R. Horodecki, and M. Piani, Quantumness of ensemble from no-broadcasting principle, Int. J. Quant. Inf. 04(01), 105 (2006)

[8]

O. Oreshkov and J. Calsamiglia, Distinguishability measures between ensembles of quantum states, Phys. Rev. A 79(3), 032336 (2009)

[9]

X. Zhu, S. Pang, S. Wu, and Q. Liu, The classicality and quantumness of a quantum ensemble, Phys. Lett. A 375(18), 1855 (2011)

[10]

T. Ma, M. J. Zhao, Y. K. Wang, and S. M. Fei, Noncommutativity and local indistinguishability of quantum states, Sci. Rep. 4, 6336 (2014)

[11]

S. Luo, N. Li, and X. Cao, Relative entropy between quantum ensembles, Period. Math. Hung. 59(2), 223 (2009)

[12]

S. Luo, N. Li, and W. Sun, How quantum is a quantum ensemble, Quantum Inform. Process. 9(6), 711 (2010)

[13]

S. Luo, N. Li, and S. Fu, Quantumness of quantum ensembles, Theor. Math. Phys. 169(3), 1724 (2011)

[14]

N. Li, S. Luo, and Y. Mao, Quantifying the quantumness of ensembles, Phys. Rev. A 96(2), 022132 (2017)

[15]

B. Dakić, V. Vedral, and Č. Brukner, Necessary and sufficient condition for nonzero quantum discord, Phys. Rev. Lett. 105(19), 190502 (2010)

[16]

S. Luo and S. Fu, Measurement-induced nonlocality, Phys. Rev. Lett. 106(12), 120401 (2011)

[17]

M. L. Hu and H. Fan, Measurement-induced nonlocality based on trace norm, New J. Phys. 17(3), 033004 (2015)

[18]

X. Zhan, Matrix Theory, Graduate Studies in Mathematics Vol. 147, American Mathematical Society, Providence, Rhode Island, 2013

[19]

Y. Peng, Y. Jiang, and H. Fan, Maximally coherent states and coherence-preserving operations, Phys. Rev. A 93(3), 032326 (2016)

[20]

T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying coherence, Phys. Rev. Lett. 113(14), 140401 (2014)

[21]

X. Yuan, H. Zhou, Z. Cao, and X. Ma, Intrinsic randomness as a measure of quantum coherence, Phys. Rev. A 92(2), 022124 (2015)

[22]

X. F. Qi, T. Gao, and F. L. Yan, Measuring coherence with entanglement concurrence, J. Phys. A Math. Theor. 50(28), 285301 (2017)

[23]

S. Hill and W. K. Wootters, Entanglement of a pair of quantum bits, Phys. Rev. Lett. 78(26), 5022 (1997)

[24]

W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80(10), 2245 (1998)

[25]

H. Ollivier and W. H. Zurek, Quantum discord: A measure of the quantumness of correlations, Phys. Rev. Lett. 88(1), 017901 (2001)

[26]

L. Henderson and V. Vedral, Classical, quantum and total correlations, J. Phys. A Math. Gen. 34(35), 6899 (2001)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (142KB)

858

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/