Molecular dynamics study of nanodroplet diffusion on smooth solid surfaces
Zhao-Xia Niu, Tao Huang, Yong Chen
Molecular dynamics study of nanodroplet diffusion on smooth solid surfaces
We perform molecular dynamics simulations of Lennard–Jones particles in a canonical ensemble to study the diffusion of nanodroplets on smooth solid surfaces. Using the droplet-surface interaction to realize a hydrophilic or hydrophobic surface and calculating the mean square displacement of the center-of-mass of the nanodroplets, the random motion of nanodroplets could be characterized by shorttime subdiffusion, intermediate-time superdiffusion, and long-time normal diffusion. The short-time subdiffusive exponent increases and almost reaches unity (normal diffusion) with decreasing droplet size or enhancing hydrophobicity. The diffusion coefficient of the droplet on hydrophobic surfaces is larger than that on hydrophilic surfaces.
nanodroplet / Brownian motion / surface diffusion
[1] |
H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, High-resolution inkjet printing of all-polymer transistor circuits, Science 290(5499), 2123 (2000)
CrossRef
ADS
Google scholar
|
[2] |
J. A. Lim, W. H. Lee, H. S. Lee, J. H. Lee, Y. D. Park, and K. Cho, Self-organization of ink-jet-printed triisopropylsilylethynyl pentacene via evaporation-induced flows in a drying droplet, Adv. Funct. Mater. 18(2), 229 (2008)
CrossRef
ADS
Google scholar
|
[3] |
J. B. Boreyko and C. H. Chen, Self-propelled dropwise condensate on superhydrophobic surfaces, Phys. Rev. Lett. 103(18), 184501 (2009)
CrossRef
ADS
Google scholar
|
[4] |
R. N. Leach, F. Stevens, S. C. Langford, and J. T. Dickinson, Dropwise condensation: Experiments and simulations of nucleation and growth of water drops in a cooling system, Langmuir 22(21), 8864 (2006)
CrossRef
ADS
Google scholar
|
[5] |
R. Blossey, Self-cleaning surfaces — Virtual realities, Nat. Mater. 2(5), 301 (2003)
CrossRef
ADS
Google scholar
|
[6] |
X. Deng, L. Mammen, H. J. Butt, and D. Vollmer, Candle soot as a template for a transparent robust superamphiphobic coating, Science 335(6064), 67 (2012)
CrossRef
ADS
Google scholar
|
[7] |
X. Yao, H. Bai, J. Ju, D. Zhou, J. Li, H. Zhang, B. Yang, and L. Jiang, Running droplet of interfacial chemical reaction flow, Soft Matter 8(22), 5988 (2012)
CrossRef
ADS
Google scholar
|
[8] |
A. Fallah-Araghi, K. Meguellati, J. C. Baret, A. E. Harrak, T. Mangeat, M. Karplus, S. Ladame, C. M. Marques, and A. D. Griffiths, Enhanced chemical synthesis at soft interfaces: A universal reaction-adsorption mechanism in microcompartments, Phys. Rev. Lett. 112(2), 028301 (2014)
CrossRef
ADS
Google scholar
|
[9] |
Y. J. Sun, T. Huang, J. F. Zhao, and Y. Chen, Evaporation of a nanodroplet on a rough substrate, Front. Phys. 12(5), 126401 (2017)
CrossRef
ADS
Google scholar
|
[10] |
J. Zhang, F. Leroy, and F. Müller-Plathe, Evaporation of nanodroplets on heated substrates: A molecular dynamics simulation study, Langmuir 29(31), 9770 (2013)
CrossRef
ADS
Google scholar
|
[11] |
C. Andrieu, D. A. Beysens, V. S. Nikolayev, and Y. Pomeau, Coalescence of sessile drops, J. Fluid Mech. 453, 427 (2002)
CrossRef
ADS
Google scholar
|
[12] |
N. Savva, S. Kalliadasis, and G. A. Pavliotis, Twodimensional droplet spreading over random topographical substrates, Phys. Rev. Lett. 104(8), 084501 (2010)
CrossRef
ADS
Google scholar
|
[13] |
N. Patra, B. Wang, and P. Král, Nanodroplet activated and guided folding of graphene nanostructures, Nano Lett. 9(11), 3766 (2009)
CrossRef
ADS
Google scholar
|
[14] |
J. M. Sancho, A. M. Lacasta, K. Lindenberg, I. M. Sokolov, and A. H. Romero, Diffusion on a solid surface: Anomalous is normal, Phys. Rev. Lett. 92(25), 250601 (2004)
CrossRef
ADS
Google scholar
|
[15] |
L. Zhu, C. W. Brian, S. F. Swallen, P. T. Straus, M. D. Ediger, and L. Yu, Surface self-diffusion of an organic glass, Phys. Rev. Lett. 106(25), 256103 (2011)
CrossRef
ADS
Google scholar
|
[16] |
J. H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede, and R. Metzler, In Vivoanomalous diffusion and weak ergodicity breaking of lipid granules, Phys. Rev. Lett. 106(4), 048103 (2011)
CrossRef
ADS
Google scholar
|
[17] |
C. M. Dobson, Protein folding and misfolding, Nature 426(6968), 884 (2003)
CrossRef
ADS
Google scholar
|
[18] |
G. M. Whitesides, J. P. Mathias, and C. T. Seto, Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures, Science 254(5036), 1312 (1991)
CrossRef
ADS
Google scholar
|
[19] |
S. Wang and Y. Zhu, Molecular diffusion on surface tethered polymer layers: Coupling of molecular thermal fluctuation and polymer chain dynamics, Soft Matter 6(19), 4661 (2010)
CrossRef
ADS
Google scholar
|
[20] |
F. Klappenberger, Echoes from diffusion, Nat. Mater. 15(4), 374 (2016)
CrossRef
ADS
Google scholar
|
[21] |
F. Celestini, Diffusion of a liquid nanoparticle on a disordered substrate, Phys. Rev. B 70(11), 115402 (2004)
CrossRef
ADS
Google scholar
|
[22] |
G. D. Förster, F. Rabilloud, and F. Calvo, Adsorption of metal nanoparticles on carbon substrates and epitaxial graphene: Assessing models for dispersion forces, Phys. Rev. B 91, 245433 (2015)
CrossRef
ADS
Google scholar
|
[23] |
T. A. Ho, D. V. Papavassiliou, L. L. Lee, and A. Striolo, Liquid water can slip on a hydrophilic surface, Proc. Natl. Acad. Sci. USA 108(39), 16170 (2011)
CrossRef
ADS
Google scholar
|
[24] |
S. Daniel, M. K. Chaudhury, and J. C. Chen, Fast drop movements resulting from the phase change on a gradient surface, Science 291(5504), 633 (2001)
CrossRef
ADS
Google scholar
|
[25] |
Z. Li and H. Wang, Drag force, diffusion coefficient, and electric mobility of small particles (I): Theory applicable to the free-molecule regime, Phys. Rev. E 68(6), 061206 (2003)
CrossRef
ADS
Google scholar
|
[26] |
C. Li, J. Huang, and Z. Li, A relation for nanodroplet diffusion on smooth surfaces, Sci. Rep. 6, 26488 (2016)
CrossRef
ADS
Google scholar
|
[27] |
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117(1), 1 (1995)
CrossRef
ADS
Google scholar
|
[28] |
J. Davoodi, M. Safaralizade, and M. Yarifard, Molecular dynamics simulation of a gold nanodroplet in contact with graphene, Mater. Lett. 178, 205 (2016)
CrossRef
ADS
Google scholar
|
[29] |
D. J. Evans and B. L. Holian, The Nose–Hoover thermostat, J. Chem. Phys. 83(8), 4069 (1985)
CrossRef
ADS
Google scholar
|
[30] |
K. Yasuoka, M. Matsumoto, and Y. Kataoka, Evaporation and condensation at a liquid surface (I): Argon, J. Chem. Phys. 101(9), 7904 (1994)
CrossRef
ADS
Google scholar
|
[31] |
K. Yasuoka and M. Matsumoto, Molecular dynamics of homogeneous nucleation in the vapor phase (I): Lennard-Jones fluid, J. Chem. Phys. 109(19), 8451 (1998)
CrossRef
ADS
Google scholar
|
[32] |
N. Kumar, U. Harbola, and K. Lindenberg, Memoryinduced anomalous dynamics: Emergence of diffusion, subdiffusion, and superdiffusion from a single random walk model, Phys. Rev. E 82(2), 021101 (2010)
CrossRef
ADS
Google scholar
|
[33] |
W. Paul, Anomalous diffusion in polymer melts, Chem. Phys. 284(1–2), 59 (2002)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |