Molecular dynamics study of nanodroplet diffusion on smooth solid surfaces

Zhao-Xia Niu, Tao Huang, Yong Chen

PDF(4359 KB)
PDF(4359 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 137804. DOI: 10.1007/s11467-018-0772-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Molecular dynamics study of nanodroplet diffusion on smooth solid surfaces

Author information +
History +

Abstract

We perform molecular dynamics simulations of Lennard–Jones particles in a canonical ensemble to study the diffusion of nanodroplets on smooth solid surfaces. Using the droplet-surface interaction to realize a hydrophilic or hydrophobic surface and calculating the mean square displacement of the center-of-mass of the nanodroplets, the random motion of nanodroplets could be characterized by shorttime subdiffusion, intermediate-time superdiffusion, and long-time normal diffusion. The short-time subdiffusive exponent increases and almost reaches unity (normal diffusion) with decreasing droplet size or enhancing hydrophobicity. The diffusion coefficient of the droplet on hydrophobic surfaces is larger than that on hydrophilic surfaces.

Keywords

nanodroplet / Brownian motion / surface diffusion

Cite this article

Download citation ▾
Zhao-Xia Niu, Tao Huang, Yong Chen. Molecular dynamics study of nanodroplet diffusion on smooth solid surfaces. Front. Phys., 2018, 13(5): 137804 https://doi.org/10.1007/s11467-018-0772-4

References

[1]
H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, High-resolution inkjet printing of all-polymer transistor circuits, Science 290(5499), 2123 (2000)
CrossRef ADS Google scholar
[2]
J. A. Lim, W. H. Lee, H. S. Lee, J. H. Lee, Y. D. Park, and K. Cho, Self-organization of ink-jet-printed triisopropylsilylethynyl pentacene via evaporation-induced flows in a drying droplet, Adv. Funct. Mater. 18(2), 229 (2008)
CrossRef ADS Google scholar
[3]
J. B. Boreyko and C. H. Chen, Self-propelled dropwise condensate on superhydrophobic surfaces, Phys. Rev. Lett. 103(18), 184501 (2009)
CrossRef ADS Google scholar
[4]
R. N. Leach, F. Stevens, S. C. Langford, and J. T. Dickinson, Dropwise condensation: Experiments and simulations of nucleation and growth of water drops in a cooling system, Langmuir 22(21), 8864 (2006)
CrossRef ADS Google scholar
[5]
R. Blossey, Self-cleaning surfaces — Virtual realities, Nat. Mater. 2(5), 301 (2003)
CrossRef ADS Google scholar
[6]
X. Deng, L. Mammen, H. J. Butt, and D. Vollmer, Candle soot as a template for a transparent robust superamphiphobic coating, Science 335(6064), 67 (2012)
CrossRef ADS Google scholar
[7]
X. Yao, H. Bai, J. Ju, D. Zhou, J. Li, H. Zhang, B. Yang, and L. Jiang, Running droplet of interfacial chemical reaction flow, Soft Matter 8(22), 5988 (2012)
CrossRef ADS Google scholar
[8]
A. Fallah-Araghi, K. Meguellati, J. C. Baret, A. E. Harrak, T. Mangeat, M. Karplus, S. Ladame, C. M. Marques, and A. D. Griffiths, Enhanced chemical synthesis at soft interfaces: A universal reaction-adsorption mechanism in microcompartments, Phys. Rev. Lett. 112(2), 028301 (2014)
CrossRef ADS Google scholar
[9]
Y. J. Sun, T. Huang, J. F. Zhao, and Y. Chen, Evaporation of a nanodroplet on a rough substrate, Front. Phys. 12(5), 126401 (2017)
CrossRef ADS Google scholar
[10]
J. Zhang, F. Leroy, and F. Müller-Plathe, Evaporation of nanodroplets on heated substrates: A molecular dynamics simulation study, Langmuir 29(31), 9770 (2013)
CrossRef ADS Google scholar
[11]
C. Andrieu, D. A. Beysens, V. S. Nikolayev, and Y. Pomeau, Coalescence of sessile drops, J. Fluid Mech. 453, 427 (2002)
CrossRef ADS Google scholar
[12]
N. Savva, S. Kalliadasis, and G. A. Pavliotis, Twodimensional droplet spreading over random topographical substrates, Phys. Rev. Lett. 104(8), 084501 (2010)
CrossRef ADS Google scholar
[13]
N. Patra, B. Wang, and P. Král, Nanodroplet activated and guided folding of graphene nanostructures, Nano Lett. 9(11), 3766 (2009)
CrossRef ADS Google scholar
[14]
J. M. Sancho, A. M. Lacasta, K. Lindenberg, I. M. Sokolov, and A. H. Romero, Diffusion on a solid surface: Anomalous is normal, Phys. Rev. Lett. 92(25), 250601 (2004)
CrossRef ADS Google scholar
[15]
L. Zhu, C. W. Brian, S. F. Swallen, P. T. Straus, M. D. Ediger, and L. Yu, Surface self-diffusion of an organic glass, Phys. Rev. Lett. 106(25), 256103 (2011)
CrossRef ADS Google scholar
[16]
J. H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede, and R. Metzler, In Vivoanomalous diffusion and weak ergodicity breaking of lipid granules, Phys. Rev. Lett. 106(4), 048103 (2011)
CrossRef ADS Google scholar
[17]
C. M. Dobson, Protein folding and misfolding, Nature 426(6968), 884 (2003)
CrossRef ADS Google scholar
[18]
G. M. Whitesides, J. P. Mathias, and C. T. Seto, Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures, Science 254(5036), 1312 (1991)
CrossRef ADS Google scholar
[19]
S. Wang and Y. Zhu, Molecular diffusion on surface tethered polymer layers: Coupling of molecular thermal fluctuation and polymer chain dynamics, Soft Matter 6(19), 4661 (2010)
CrossRef ADS Google scholar
[20]
F. Klappenberger, Echoes from diffusion, Nat. Mater. 15(4), 374 (2016)
CrossRef ADS Google scholar
[21]
F. Celestini, Diffusion of a liquid nanoparticle on a disordered substrate, Phys. Rev. B 70(11), 115402 (2004)
CrossRef ADS Google scholar
[22]
G. D. Förster, F. Rabilloud, and F. Calvo, Adsorption of metal nanoparticles on carbon substrates and epitaxial graphene: Assessing models for dispersion forces, Phys. Rev. B 91, 245433 (2015)
CrossRef ADS Google scholar
[23]
T. A. Ho, D. V. Papavassiliou, L. L. Lee, and A. Striolo, Liquid water can slip on a hydrophilic surface, Proc. Natl. Acad. Sci. USA 108(39), 16170 (2011)
CrossRef ADS Google scholar
[24]
S. Daniel, M. K. Chaudhury, and J. C. Chen, Fast drop movements resulting from the phase change on a gradient surface, Science 291(5504), 633 (2001)
CrossRef ADS Google scholar
[25]
Z. Li and H. Wang, Drag force, diffusion coefficient, and electric mobility of small particles (I): Theory applicable to the free-molecule regime, Phys. Rev. E 68(6), 061206 (2003)
CrossRef ADS Google scholar
[26]
C. Li, J. Huang, and Z. Li, A relation for nanodroplet diffusion on smooth surfaces, Sci. Rep. 6, 26488 (2016)
CrossRef ADS Google scholar
[27]
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117(1), 1 (1995)
CrossRef ADS Google scholar
[28]
J. Davoodi, M. Safaralizade, and M. Yarifard, Molecular dynamics simulation of a gold nanodroplet in contact with graphene, Mater. Lett. 178, 205 (2016)
CrossRef ADS Google scholar
[29]
D. J. Evans and B. L. Holian, The Nose–Hoover thermostat, J. Chem. Phys. 83(8), 4069 (1985)
CrossRef ADS Google scholar
[30]
K. Yasuoka, M. Matsumoto, and Y. Kataoka, Evaporation and condensation at a liquid surface (I): Argon, J. Chem. Phys. 101(9), 7904 (1994)
CrossRef ADS Google scholar
[31]
K. Yasuoka and M. Matsumoto, Molecular dynamics of homogeneous nucleation in the vapor phase (I): Lennard-Jones fluid, J. Chem. Phys. 109(19), 8451 (1998)
CrossRef ADS Google scholar
[32]
N. Kumar, U. Harbola, and K. Lindenberg, Memoryinduced anomalous dynamics: Emergence of diffusion, subdiffusion, and superdiffusion from a single random walk model, Phys. Rev. E 82(2), 021101 (2010)
CrossRef ADS Google scholar
[33]
W. Paul, Anomalous diffusion in polymer melts, Chem. Phys. 284(1–2), 59 (2002)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(4359 KB)

Accesses

Citations

Detail

Sections
Recommended

/