Controlled growth of complex polar oxide films with atomically precise molecular beam epitaxy

Fang Yang, Yan Liang, Li-Xia Liu, Qing Zhu, Wei-Hua Wang, Xue-Tao Zhu, Jian-Dong Guo

PDF(3297 KB)
PDF(3297 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 136802. DOI: 10.1007/s11467-018-0769-z
REVIEW ARTICLE
REVIEW ARTICLE

Controlled growth of complex polar oxide films with atomically precise molecular beam epitaxy

Author information +
History +

Abstract

At heterointerfaces between complex oxides with polar discontinuity, the instability-induced electric field may drive electron redistribution, causing a dramatic change in the interfacial charge density. This results in the emergence of a rich diversity of exotic physical phenomena in these quasi-two-dimensional systems, which can be further tuned by an external field. To develop novel multifunctional electronic devices, it is essential to control the growth of polar oxide films and heterointerfaces with atomic precision. In this article, we review recent progress in control techniques for oxide film growth by molecular beam epitaxy (MBE). We emphasize the importance of tuning the microscopic surface structures of polar films for developing precise growth control techniques. Taking the polar SrTiO3 (110) and (111) surfaces as examples, we show that, by keeping the surface reconstructed throughout MBE growth, high-quality layer-by-layer homoepitaxy can be realized. Because the stability of different reconstructions is determined by the surface cation concentration, the growth rate from the Sr/Ti evaporation source can be monitored in real time. A precise, automated control method is established by which insulating homoepitaxial SrTiO3 (110) and (111) films can be obtained on doped metallic substrates. The films show atomically well-defined surfaces and high dielectric performance, which allows the surface carrier concentration to be tuned in the range of ~1013/cm2. By applying the knowledge of microstructures from fundamental surface physics to film growth techniques, new opportunities are provided for material science and related research.

Keywords

complex oxide films / molecular beam epitaxy / surface reconstruction / heterointerfaces

Cite this article

Download citation ▾
Fang Yang, Yan Liang, Li-Xia Liu, Qing Zhu, Wei-Hua Wang, Xue-Tao Zhu, Jian-Dong Guo. Controlled growth of complex polar oxide films with atomically precise molecular beam epitaxy. Front. Phys., 2018, 13(5): 136802 https://doi.org/10.1007/s11467-018-0769-z

References

[1]
A. Ohtomo, D. A. Muller, J. L. Grazul, and H. Y. Hwang, Artificial charge-modulation in atomic-scale perovskite titanate superlattices, Nature 419(6905), 378 (2002)
CrossRef ADS Google scholar
[2]
A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature 427(6973), 423 (2004); corrigendum: Nature 441(7089), 120 (2006)
CrossRef ADS Google scholar
[3]
A. Gozar, G. Logvenov, L. F. Kourkoutis, A. T. Bollinger, L. A. Giannuzzi, D. A. Muller, and I. Bozovic, High-temperature interface superconductivity between metallic and insulating copper oxides, Nature 455(7214), 782 (2008)
CrossRef ADS Google scholar
[4]
H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Emergent phenomena at oxide interfaces, Nat. Mater. 11(2), 103 (2012)
CrossRef ADS Google scholar
[5]
Y. W. Xie, C. Bell, Y. Hikita, and H. Y. Hwang, Tuning the electron gas at an oxide heterointerface via free surface charges, Adv. Mater. 23(15), 1744 (2011)
CrossRef ADS Google scholar
[6]
A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J. M. Triscone, Electric field control of the LaAlO3/SrTiO3 interface ground state, Nature 456(7222), 624 (2008)
CrossRef ADS Google scholar
[7]
C. Cen, S. Thiel, G. Hammerl, C. W. Schneider, K. E. Andersen, C. S. Hellberg, J. Mannhart, and J. Levy, Nanoscale control of an interfacial metal-insulator transition at room temperature, Nat. Mater. 7(4), 298 (2008)
CrossRef ADS Google scholar
[8]
S. Mathews, R. Ramesh, T. Venkatesan, and J. Benedetto, Ferroelectric field effect transistor based on epitaxial perovskite heterostructures, Science 276(5310), 238 (1997)
CrossRef ADS Google scholar
[9]
W. Siemons, G. Koster, H. Yamamoto, W. A. Harrison, G. Lucovsky, T. H. Geballe, D. H. A. Blank, and M. R. Beasley, Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: Possibility of intrinsic doping, Phys. Rev. Lett. 98(19), 196802 (2007)
CrossRef ADS Google scholar
[10]
D. G. Schlom and L. N. Pfeiffer, Oxide electronics: Upward mobility rocks! Nat. Mater. 9(11), 881 (2010)
CrossRef ADS Google scholar
[11]
Z. Q. Liu, C. J. Li, W. M. Lü, X. H. Huang, Z. Huang, S. W. Zeng, X. P. Qiu, L. S. Huang, A. Annadi, J. S. Chen, J. M. D. Coey, T. Venkatesan, and Ariando, Origin of the two-dimensional electron gas at LaAlO3/SrTiO3 interfaces: The role of oxygen vacancies and electronic reconstruction, Phys. Rev. X 3(2), 021010 (2013)
CrossRef ADS Google scholar
[12]
J. H. Haeni, C. D. Theis, and D. G. Schlom, RHEED intensity oscillations for the stoichiometric growth of Sr- TiO3 thin films by reactive molecular beam epitaxy, J. Electroceram. 4(2–3), 385 (2000)
CrossRef ADS Google scholar
[13]
A. Tselev, P. Ganesh, L. Qiao, W. Siemons, Z. Gai, M. D. Biegalski, A. P. Baddorf, and S. V. Kalinin, Oxygen control of atomic structure and physical properties of SrRuO3 surfaces, ACS Nano 7(5), 4403 (2013)
CrossRef ADS Google scholar
[14]
S. Y. Jang, S. J. Moon, B. C. Jeon, and J. S. Chung, PLD growth of epitaxially-stabilized 5d perovskite SrIrO3 thin films, J. Korean Phys. Soc. 56(6), 1814 (2010)
CrossRef ADS Google scholar
[15]
Y. S. Kim, N. Bansal, C. Chaparro, H. Gross, and S. Oh, Sr flux stability against oxidation in oxide-molecularbeam- epitaxy environment: Flux, geometry, and pressure dependence, J. Vac. Sci. Technol. A 28(2), 271 (2010)
CrossRef ADS Google scholar
[16]
H. M. Christen, L. A. Boatner, J. D. Budai, M. F. Chisholm, L. A. Gea, P. J. Marrero, and D. P. Norton, The growth and properties of epitaxial KNbO3 thin films and KNbO3/KTaO3 superlattices, Appl. Phys. Lett. 68(11), 1488 (1996)
CrossRef ADS Google scholar
[17]
H. J. Bae, J. Sigman, S. J. Park, Y. H. Heo, L. A. Boatner, and D. P. Norton, Growth of semiconducting KTaO3 thin films, Solid-State Electron. 48(1), 51 (2004)
CrossRef ADS Google scholar
[18]
Z. L. Liao, F. M. Li, P. Gao, L. Li, J. D. Guo, X. Q. Pan, R. Jin, E. W. Plummer, and J. D. Zhang, Origin of the metal-insulator transition in ultrathin films of La2/3Sr2/3MnO3, Phys. Rev. B 92(12), 125123 (2015)
CrossRef ADS Google scholar
[19]
Z. P. Li, M. Bosman, Z. Yang, P. Ren, L. Wang, L. Cao, X. Yu, C. Ke, M. B. H. Breese, A. Rusydi, W. Zhu, Z. Dong, and Y. L. Foo, Interface and surface cation stoichiometry modified by oxygen vacancies in epitaxial manganite films, Adv. Funct. Mater. 22(20), 4312 (2012)
CrossRef ADS Google scholar
[20]
W. S. Choi, C. M. Rouleau, S. S. A. Seo, Z. Luo, H. Zhou, T. T. Fister, J. A. Eastman, P. H. Fuoss, D. D. Fong, J. Z. Tischler, G. Eres, M. F. Chisholm, and H. N. Lee, Atomic layer engineering of perovskite oxides for chemically sharp heterointerfaces, Adv. Mater. 24(48), 6423 (2012)
CrossRef ADS Google scholar
[21]
B. Stanka, W. Hebenstreit, U. Diebold, and S. A. Chambers, Surface reconstruction of Fe3O4(001), Surf. Sci. 448(1), 49 (2000)
CrossRef ADS Google scholar
[22]
P. K. Nayak, M. N. Hedhili, D. K. Cha, and H. N. Alshareef, High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment, Appl. Phys. Lett. 100(20), 202106 (2012); errutum: Appl. phys. Lett. 105(24), 249902 (2014)
CrossRef ADS Google scholar
[23]
C. K. Tan, G. K. L. Goh, and W. L. Cheah, Dielectric properties of hydrothermally epitaxied I–Vperovskite thin films, Thin Solid Films 515(16), 6577 (2007)
CrossRef ADS Google scholar
[24]
T. S. Herng, S. P. Lau, S. F. Yu, H. Y. Yang, K. S. Teng, and J. S. Chen, Enhancement of ferromagnetism and stability in Cu-doped ZnO by N2O annealing, J. Phys.: Condens. Matter 19(35), 356214 (2007)
CrossRef ADS Google scholar
[25]
D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3, Nature 430(7000), 657 (2004)
CrossRef ADS Google scholar
[26]
L. D. Yao, S. Inkinen, and S. van Dijken, Direct observation of oxygen vacancy-driven structural and resistive phase transitions in La2/3Sr1/3MnO3, Nat. Commun. 8, 14544 (2017)
CrossRef ADS Google scholar
[27]
F. Lichtenberg, D. Widmer, J. G. Bednorz, T. Williams, and A. Reller, Phase-diagram of latiox- from 2d layered ferroelectric insulator to 3d weak ferromagnetic semiconductor, Z. Phys. B- Condensed Matter 82(2), 211 (1991)
CrossRef ADS Google scholar
[28]
M. Choi, F. Oba, and I. Tanaka, Role of Ti antisitelike defects in SrTiO3, Phys. Rev. Lett. 103(18), 185502 (2009)
CrossRef ADS Google scholar
[29]
F. Yang, Q. Zhang, Z. Yang, J. Gu, Y. Liang, W. Li, W. Wang, K. Jin, L. Gu, and J. Guo, Room-temperature ferroelectricity of SrTiO3 films modulated by cation concentration, Appl. Phys. Lett. 107(8), 082904 (2015)
CrossRef ADS Google scholar
[30]
E. Breckenfeld, N. Bronn, J. Karthik, A. R. Damodaran, S. Lee, N. Mason, and L. W. Martin, Effect of growth induced (non) stoichiometry on interfacial conductance in LaAlO3/SrTiO3, Phys. Rev. Lett. 110(19), 196804 (2013)
CrossRef ADS Google scholar
[31]
H. Yamada, M. Kawasaki, T. Lottermoser, T. Arima, and Y. Tokura, LaMnO3/SrMnO3 interfaces with coupled charge-spin-orbital modulation, Appl. Phys. Lett. 89(5), 052506 (2006)
CrossRef ADS Google scholar
[32]
N. Nakagawa, H. Y. Hwang, and D. A. Muller, Why some interfaces cannot be sharp, Nat. Mater. 5(3), 204 (2006)
CrossRef ADS Google scholar
[33]
J. Chakhalian, J. W. Freeland, A. J. Millis, C. Panagopoulos, and J. M. Rondinelli, Emergent properties in plane view: Strong correlations at oxide interfaces, Rev. Mod. Phys. 86(4), 1189 (2014)
CrossRef ADS Google scholar
[34]
S. Okamoto and A. J. Millis, Electronic reconstruction at an interface between a Mott insulator and a band insulator, Nature 428(6983), 630 (2004)
CrossRef ADS Google scholar
[35]
J. Chakhalian, J. W. Freeland, H. U. Habermeier, G. Cristiani, G. Khaliullin, M. van Veenendaal, and B. Keimer, Orbital reconstruction and covalent bonding at an oxide interface, Science 318(5853), 1114 (2007)
CrossRef ADS Google scholar
[36]
Q. Y. Wang, Z. Li, W. H. Zhang, Z. C. Zhang, J. S. Zhang, W. Li, H. Ding, Y. B. Ou, P. Deng, K. Chang, J. Wen, C. L. Song, K. He, J. F. Jia, S. H. Ji, Y. Y. Wang, L. L. Wang, X. Chen, X. C. Ma, and Q. K. Xue, Interfaceinduced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3, Chin. Phys. Lett. 29(3), 037402 (2012)
CrossRef ADS Google scholar
[37]
M. P. Warusawithana, C. Cen, C. R. Sleasman, J. C. Woicik, Y. Li, L. F. Kourkoutis, J. A. Klug, H. Li, P. Ryan, L. P. Wang, M. Bedzyk, D. A. Muller, L. Q. Chen, J. Levy, and D. G. Schlom, A ferroelectric oxide made directly on silicon, Science 324(5925), 367 (2009)
CrossRef ADS Google scholar
[38]
Z. M. Wang, J. G. Feng, Y. Yang, Y. Yao, L. Gu, F. Yang, Q. L. Guo, and J. D. Guo, Cation stoichiometry optimization of SrTiO3 (110) thin films with atomic precision in homogeneous molecular beam epitaxy, Appl. Phys. Lett. 100(5), 051602 (2012)
CrossRef ADS Google scholar
[39]
J. G. Feng, F. Yang, Z. M. Wang, Y. Yang, L. Gu, J. D. Zhang, and J. D. Guo, Growth of SrTiO3 (110) film by oxide molecular beam epitaxy with feedback control, AIP Adv. 2(4), 041407 (2012)
CrossRef ADS Google scholar
[40]
S. Phark, Y. J. Chang, and T. Won Noh, Selective growth of perovskite oxides on SrTiO3 (001) by control of surface reconstructions, Appl. Phys. Lett. 98(16), 161908 (2011)
CrossRef ADS Google scholar
[41]
Y. J. Chang and S. H. Phark, Atomic-scale visualization of initial growth of perovskites on SrTiO3 (001) using scanning tunneling microscope, Curr. Appl. Phys. 17(5), 640 (2017)
CrossRef ADS Google scholar
[42]
R. A. Betts and C. W. Pitt, Growth of thin-film lithium-niobate by molecular-beam epitaxy, Electron. Lett. 21(21), 960 (1985)
CrossRef ADS Google scholar
[43]
M. Petrucci, C. W. Pitt, and P. J. Dobson, RHEED studies on Z-cut LiNbO3, Electron. Lett. 22(18), 954 (1986)
CrossRef ADS Google scholar
[44]
J. R. Jr Arthur, Interaction of Ga and As2 molecular beams with GaAs surfaces, J. Appl. Phys. 39(8), 4032 (1968)
CrossRef ADS Google scholar
[45]
D. G. Schlom and J. S. Harris, MBE Growth of High Tc Superconductors, in: Molecular Beam Epitaxy: Applications to Key Materials, Ed. RFC Farrow, Park Ridge, 1995, p. 505
CrossRef ADS Google scholar
[46]
Y. S. Kim, N. Bansal, and S. Oh, Crucible aperture: An effective way to reduce source oxidation in oxide molecular beam epitaxy process, J. Vac. Sci. Technol. A 28(4), 600 (2010)
CrossRef ADS Google scholar
[47]
Y. S. Kim, N. Bansal, and S. Oh, Simple self-gettering differential-pump for minimizing source oxidation in oxide-MBE environment, J. Vac. Sci. Technol. A 29(4), 041505 (2011)
CrossRef ADS Google scholar
[48]
H. T. Zhang, L. R. Dedon, L. W. Martin, and R. Engel-Herbert, Self-regulated growth of LaVO3 thin films by hybrid molecular beam epitaxy, Appl. Phys. Lett. 106(23), 233102 (2015)
CrossRef ADS Google scholar
[49]
B. Jalan, R. Engel-Herbert, N. J. Wright, and S. Stemmer, Growth of high-quality SrTiO3 films using a hybrid molecular beam epitaxy approach, J. Vac. Sci. Technol. A 27(3), 461 (2009)
CrossRef ADS Google scholar
[50]
P. Fisher, H. Du, M. Skowronski, P. A. Salvador, O. Maksimov, and X. Weng, Stoichiometric, nonstoichiometric, and locally nonstoichiometric SrTiO3 films grown by molecular beam epitaxy, J. Appl. Phys. 103(1), 013519 (2008)
CrossRef ADS Google scholar
[51]
Z. Yu, Y. Liang, C. Overgaard, X. Hu, J. Curless, H. Li, Y. Wei, B. Craigo, D. Jordan, R. Droopad, J. Finder, K. Eisenbeiser, D. Marshall, K. Moore, J. Kulik, and P. Fejes, Advances in heteroepitaxy of oxides on silicon, Thin Solid Films462–463, 51 (2004)
CrossRef ADS Google scholar
[52]
C. P. I. Ichimiya Ayahiko, Reflection High Energy Election Diffraction, Cambridge: Cambridge University Press, 2004
CrossRef ADS Google scholar
[53]
P. Moetakef, D. G. Ouellette, J. Y. Zhang, T. A. Cain, S. J. Allen, and S. Stemmer, Growth and properties of GdTiO3 films prepared by hybrid molecular beam epitaxy, J. Cryst. Growth 355(1), 166 (2012)
CrossRef ADS Google scholar
[54]
Y. Liang, W. T. Li, S. Y. Zhang, C. J. Lin, C. Li, Y. Yao, Y. Q. Li, H. Yang, and J. D. Guo, Homoepitaxial SrTiO3 (111) film with high dielectric performance and atomically well-defined surface, Sci. Rep. 5(1), 10634 (2015)
CrossRef ADS Google scholar
[55]
M. P. Warusawithana, C. Richter, J. A. Mundy, P. Roy, J. Ludwig, S. Paetel, T. Heeg, A. A. Pawlicki, L. F. Kourkoutis, M. Zheng, M. Lee, B. Mulcahy, W. Zander, Y. Zhu, J. Schubert, J. N. Eckstein, D. A. Muller, C. S. Hellberg, J. Mannhart, and D. G. Schlom, LaAlO3 stoichiometry is key to electron liquid formation at LaAlO3/SrTiO3 interfaces, Nat. Commun. 4, 2351 (2013)
CrossRef ADS Google scholar
[56]
J. Goniakowski, F. Finocchi, and C. Noguera, Polarity of oxide surfaces and nanostructures, Rep. Prog. Phys. 71(1), 016501 (2008)
CrossRef ADS Google scholar
[57]
J. A. Enterkin, A. K. Subramanian, B. C. Russell, M. R. Castell, K. R. Poeppelmeier, and L. D. Marks, A homologous series of structures on the surface of SrTiO3 (110), Nat. Mater. 9(3), 245 (2010)
CrossRef ADS Google scholar
[58]
R. Bachelet, F. Valle, I. C. Infante, F. Sanchez, and J. Fontcuberta, Step formation, faceting, and bunching in atomically flat SrTiO3 (110) surfaces, Appl. Phys. Lett. 91(25), 251904 (2007)
CrossRef ADS Google scholar
[59]
J. Brunen and J. Zegenhagen, Investigation of the Sr- TiO3 (110) surface by means of LEED, scanning tunneling microscopy and Auger spectroscopy, Surf. Sci. 389(1–3), 349 (1997)
[60]
H. Bando, Y. Aiura, Y. Haruyama, T. Shimizu, and Y. Nishihara, Structure and electronic states on reduced SrTiO3 (110) surface observed by scanning-tunnelingmicroscopy and spectroscopy, J. Vac. Sci. Technol. B 13(3), 1150 (1995)
CrossRef ADS Google scholar
[61]
B. C. Russell and M. R. Castell, Reconstructions on the polar SrTiO3 (110) surface: Analysis using STM, LEED, and AES, Phys. Rev. B 77(24), 245414 (2008)
CrossRef ADS Google scholar
[62]
Z. M. Wang, K. H. Wu, Q. L. Guo, and J. D. Guo, Tuning the termination of the SrTiO3 (110) surface by Ar+ sputtering, Appl. Phys. Lett. 95(2), 021912 (2009)
CrossRef ADS Google scholar
[63]
F. M. Li, Z. M. Wang, S. Meng, Y. B. Sun, J. L. Yang, Q. L. Guo, and J. D. Guo, Reversible transition between thermodynamically stable phases with low density of oxygen vacancies on the SrTiO3 (110) surface, Phys. Rev. Lett. 107(3), 036103 (2011)
CrossRef ADS Google scholar
[64]
Z. M. Wang, F. Yang, Z. Q. Zhang, Y. Y. Tang, J. G. Feng, K. H. Wu, Q. L. Guo, and J. D. Guo, Evolution of the surface structures on SrTiO3 (110) tuned by Ti or Sr concentration, Phys. Rev. B 83(15), 155453 (2011)
CrossRef ADS Google scholar
[65]
Y. Haruyama, Y. Aiura, H. Bando, Y. Nishihara, and H. Kato, Annealing temperature dependence on the electronic structure of the reduced SrTiO3 (111) surface, J. Electron Spectroscopy and Related Phenomena88–91, 695 (1998)
CrossRef ADS Google scholar
[66]
S. Sekiguchi, M. Fujimoto, M. G. Kang, S. Koizumi, S. B. Cho, and J. Tanaka, Structure analysis of SrTiO3 (111) polar surfaces, Jpn. J. Appl. Phys. 37(7), 4140 (1998)
CrossRef ADS Google scholar
[67]
S. Sekiguchi, M. Fujimoto, M. Nomura, S. B. Cho, J. Tanaka, T. Nishihara, M. G. Kang, and H. H. Park, Atomic force microscopic observation of SrTiO3 polar surface, Solid State Ion. 108(1–4), 73 (1998)
CrossRef ADS Google scholar
[68]
H. Tanaka and T. Kawai, Surface structure of reduced SrTiO3 (111) observed by scanning tunneling microscopy, Surf. Sci. 365(2), 437 (1996)
CrossRef ADS Google scholar
[69]
B. C. Russell and M. R. Castell, ( 13× 13)R13.9◦ and (7×7)R19.1 ◦ reconstructions of the polar SrTiO3 (111) surface, Phys. Rev. B 75(15), 155433 (2007)
CrossRef ADS Google scholar
[70]
B. C. Russell and M. R. Castell, Surface of sputtered and annealed polar SrTiO3 (111): TiOx-rich (n×n) reconstructions, J. Phys. Chem. C 112(16), 6538 (2008)
CrossRef ADS Google scholar
[71]
J. G. Feng, X. T. Zhu, and J. D. Guo, Reconstructions on SrTiO3 (111) surface tuned by Ti/Sr deposition, Surf. Sci. 614, 38 (2013)
CrossRef ADS Google scholar
[72]
Z. M. Wang, F. M. Li, S. Meng, J. D. Zhang, E. W. Plummer, U. Diebold, and J. D. Guo, Strain-induced defect superstructure on the SrTiO3 (110) surface, Phys. Rev. Lett. 111(5), 056101 (2013)
CrossRef ADS Google scholar
[73]
K. Shimoyama, K. Kubo, T. Maeda, and K. Yamabe, Epitaxial growth of BaTiO3 thin film on SrTiO3 substrate in ultra-high vacuum without introducing oxidant, Jpn. J. Appl. Phys. 40(5a), L463 (2001)
CrossRef ADS Google scholar
[74]
K. Shimoyama, M. Kiyohara, A. Uedono, and K. Yamabe, Homoepitaxial growth of SrTiO3 in an ultrahigh vacuum with automatic feeding of oxygen from the substrate at temperatures as low as 370◦C, Jpn. J. Appl. Phys. 41(3a), L269 (2002)
CrossRef ADS Google scholar
[75]
K. Shimoyama, M. Kiyohara, K. Kubo, A. Uedono, and K. Yamabe, Epitaxial growth of BaTiO3/SrTiO3 structures on SrTiO3 substrate with automatic feeding of oxygen from the substrate, J. Appl. Phys. 92(8), 4625 (2002)
CrossRef ADS Google scholar
[76]
R. A. De Souza, V. Metlenko, D. Park, and T. E. Weirich, Behavior of oxygen vacancies in single-crystal SrTiO3: Equilibrium distribution and diffusion kinetics, Phys. Rev. B 85(17), 174109 (2012)
CrossRef ADS Google scholar
[77]
F. M. Li, F. Yang, Y. Liang, S. Li, Z. Yang, Q. Zhang, W. Li, X. Zhu, L. Gu, J. Zhang, E. W. Plummer, and J. Guo, -doping of oxygen vacancies dictated by thermodynamics in epitaxial SrTiO3 films, AIP Adv. 7(6), 065001 (2017)
CrossRef ADS Google scholar
[78]
L. D. Marks, A. N. Chiaramonti, S. U. Rahman, and M. R. Castell, Transition from order to configurational disorder for surface reconstructions on SrTiO3 (111), Phys. Rev. Lett. 114(22), 226101 (2015)
CrossRef ADS Google scholar
[79]
H. Z. Cheng and A. Selloni, Surface and subsurface oxygen vacancies in anatase TiO2 and differences with rutile, Phys. Rev. B 79(9), 092101 (2009)
CrossRef ADS Google scholar
[80]
J. Shin, A. Y. Borisevich, V. Meunier, J. Zhou, E. W. Plummer, S. V. Kalinin, and A. P. Baddorf, Oxygen- Induced Surface Reconstruction of SrRuO3 and Its Effect on the BaTiO3 Interface, ACS Nano 4(7), 4190 (2010)
CrossRef ADS Google scholar
[81]
L. M. Peng, Electron atomic scattering factors and scattering potentials of crystals, Micron 30(6), 625 (1999)
CrossRef ADS Google scholar
[82]
B. Kubota, Decomposition of higher oxides of chromium under various pressures of oxygen, J. Am. Ceram. Soc. 44(5), 239 (1961)
CrossRef ADS Google scholar
[83]
R. N. Song, M. H.Hu, X. R. Chen, and J. D. Guo, Epitaxial growth and thermostability of cubic and hexagonal SrMnO3 films on SrTiO3 (111), Front. Phys. 10(3), 321 (2015)
CrossRef ADS Google scholar
[84]
M. Huijben, A. Brinkman, G. Koster, G. Rijnders, H. Hilgenkamp, and D. H. A. Blank, Structure-property relation of SrTiO3/LaAlO3 interfaces, Adv. Mater. 21(17), 1665 (2009)
CrossRef ADS Google scholar
[85]
R. Tromp, G. W. Rubloff, P. Balk, F. K. Legoues, and E. J. Vanloenen, High-temperature SiO2 decomposition at the SiO2/Si interface, Phys. Rev. Lett. 55(21), 2332 (1985)
CrossRef ADS Google scholar
[86]
Y. W. Xie and H. Y. Hwang, Tuning the electrons at the LaAlO3/SrTiO3 interface: From growth to beyond growth, Chin. Phys. B 22(12), 127301 (2013)
CrossRef ADS Google scholar
[87]
W. T. Li, Y. Liang, W. H. Wang, F. Yang, and J. D. Guo, Precise control of LaTiO3 (110) film growth by molecular beam epitaxy and surface termination of the polar film, Acta Physica Sinica 64(7), 078103 (2015)
[88]
I. C. Infante, J. O. Osso, F. Sanchez, and J. Fontcuberta, Tuning in-plane magnetic anisotropy in (110) La2/3Ca1/3MnO3 films by anisotropic strain relaxation, Appl. Phys. Lett. 92(1), 012508 (2008)
CrossRef ADS Google scholar
[89]
J. X. Ma, X. F. Liu, T. Lin, G. Y. Gao, J. P. Zhang, W. B. Wu, X. G. Li, and J. Shi, Interface ferromagnetism in (110)-oriented La0.7Sr0.3MnO3/SrTiO3 ultrathin superlattices, Phys. Rev. B 79(17), 174424 (2009)
CrossRef ADS Google scholar
[90]
A. Roy and D. Vanderbilt, Theory of prospective perovskite ferroelectrics with double Rocksalt order, Phys. Rev. B 83(13), 134116 (2011)
CrossRef ADS Google scholar
[91]
J. Chang, K. Lee, M. H. Jung, J. H. Kwon, M. Kim, and S. K. Kim, Emergence of room-temperature magnetic ordering in artificially fabricated ordered-doubleperovskite Sr2FeRuO6, Chem. Mater. 23(11), 2693 (2011)
CrossRef ADS Google scholar
[92]
K. Y. Yang, W. G. Zhu, D. Xiao, S. Okamoto, Z. Q. Wang, and Y. Ran, Possible interaction-driven topological phases in (111) bilayers of LaNiO3, Phys. Rev. B 84(20), 201104(R) (2011)
[93]
D. Xiao, W. G. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures, Nat. Commun. 2, 596 (2011)
CrossRef ADS Google scholar
[94]
R. Mishra, J. R. Soliz, P. M. Woodward, and W. Windl, Ca2MnRuO6: Magnetic order arising from chemical chaos, Chem. Mater. 24(14), 2757 (2012)
CrossRef ADS Google scholar
[95]
F. D. M. Haldane, Model for a quantum Hall-effect without Landau-Levels – condensed-matter realization of the parity anomaly, Phys. Rev. Lett. 61(18), 2015 (1988)
CrossRef ADS Google scholar
[96]
D. Doennig, W. E. Pickett, and R. Pentcheva, Massive symmetry breaking in LaAlO3/SrTiO3 (111) quantum wells: A three-orbital strongly correlated generalization of graphene, Phys. Rev. Lett. 111(12), 126804 (2013)
CrossRef ADS Google scholar
[97]
C. R. Ma, M. Liu, C. L. Chen, Y. Lin, Y. R. Li, J. S. Horwitz, J. C. Jiang, E. I. Meletis, and Q. Y. Zhang, The origin of local strain in highly epitaxial oxide thin films, Sci. Rep. 3(1), 3092 (2013)
CrossRef ADS Google scholar
[98]
D. G. Schlom, L. Q. Chen, X. Q. Pan, A. Schmehl, and M. A. Zurbuchen, A thin film approach to engineering functionality into oxides, J. Am. Ceram. Soc. 91(8), 2429 (2008)
CrossRef ADS Google scholar
[99]
J. Liu, M. Kareev, S. Prosandeev, B. Gray, P. Ryan, J. W. Freeland, and J. Chakhalian, Effect of polar discontinuity on the growth of LaNiO3/LaAlO3 superlattices, Appl. Phys. Lett. 96(13), 133111 (2010)
CrossRef ADS Google scholar
[100]
J. L. Blok, X. Wan, G. Koster, D. H. A. Blank, and G. Rijnders, Epitaxial oxide growth on polar (111) surfaces, Appl. Phys. Lett. 99(15), 151917 (2011)
CrossRef ADS Google scholar
[101]
Y. Mukunoki, N. Nakagawa, T. Susaki, and H. Y. Hwang, Atomically flat (110) SrTiO3 and heteroepitaxy, Appl. Phys. Lett. 86(17), 171908 (2005)
CrossRef ADS Google scholar
[102]
G. Koster, G. J. H. M. Rijnders, D. H. A. Blank, and H. Rogalla, Imposed layer-by-layer growth by pulsed laser interval deposition, Appl. Phys. Lett. 74(24), 3729 (1999)
CrossRef ADS Google scholar
[103]
M. Kareev, S. Prosandeev, B. Gray, J. Liu, P. Ryan, A. Kareev, E. Ju Moon, and J. Chakhalian, Sub-monolayer nucleation and growth of complex oxides at high supersaturation and rapid flux modulation, J. Appl. Phys. 109(11), 114303 (2011)
CrossRef ADS Google scholar
[104]
B. Dam, J. H. Rector, J. Johansson, J. Huijbregtse, and D. G. De Groot, Mechanism of incongruent ablation of SrTiO3, J. Appl. Phys. 83(6), 3386 (1998)
CrossRef ADS Google scholar
[105]
M. Hu, Q. Zhang, L. Gu, Q. Guo, Y. Cao, M. Kareev, J. Chakhalian, and J. Guo, Reconstruction-stabilized epitaxy of LaCoO3/SrTiO3 (111) heterostructures by pulsed laser deposition, Appl. Phys. Lett. 112(3), 031603 (2018)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(3297 KB)

Accesses

Citations

Detail

Sections
Recommended

/