Quantum confinement effect in β-SiC nanowires

Peng (彭刚)Gang , Yu (于晓燕)Xiaoyan , He (何焰兰)Yan-Lan , Li (李公义)Gong-Yi , Liu (刘一星)Yi-Xing , Zhang (张鑫方)Xinfang , Zhang (张学骜)Xue-Ao

Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 137802

PDF (44960KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 137802 DOI: 10.1007/s11467-018-0768-0
RESEARCH ARTICLE

Quantum confinement effect in β-SiC nanowires

Author information +
History +
PDF (44960KB)

Abstract

The quantum confinement effect is important in nanoelectronics and optoelectronics applications; however, there is a discrepancy between the theory of quantum confinement, which indicates that band-gap widening occurs only at small sizes, and experimental observations of band-gap widening in large-diameter nanowires (NWs). This paper reports an obvious blue shift of the absorption edge in the UV-visible absorption spectra of SiC NWs with diameters of 50–300 nm. On the basis of quantum confinement theory and high-resolution transmission electron microscopy images of SiC NWs, band-gap widening in SiC NWs with diameters of up to hundreds of nanometers is fully explained; the results could help to explain similar band-gap widening in other NWs with large diameters.

Keywords

quantum confinement effect / SiC nanowires (SiC NWs) / band gap

Cite this article

Download citation ▾
Peng (彭刚)Gang, Yu (于晓燕)Xiaoyan, He (何焰兰)Yan-Lan, Li (李公义)Gong-Yi, Liu (刘一星)Yi-Xing, Zhang (张鑫方)Xinfang, Zhang (张学骜)Xue-Ao. Quantum confinement effect in β-SiC nanowires. Front. Phys., 2018, 13(4): 137802 DOI:10.1007/s11467-018-0768-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Brus, Electronic wave functions in semiconductor clusters: Experiment and theory, J. Phys. Chem. 90(12), 2555 (1986)

[2]

L. Han, M. Zeman and A. H. M. Smets, Size control, quantum confinement, and oxidation kinetics of silicon nanocrystals synthesized at a high rate by expanding thermal plasma, Appl. Phys. Lett. 106(21), 213106 (2015)

[3]

L. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett. 57(10), 1046 (1990)

[4]

V. Lehmann and U. Gösele, Porous silicon formation: A quantum wire effect, Appl. Phys. Lett. 58(8), 856 (1991)

[5]

X. Wu, J. Fan, T. Qiu, X. Yang, G. Siu, and P. K. Chu, Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites, Phys. Rev. Lett. 94(2), 026102 (2005)

[6]

F. Koch, V. Petrova-Koch, and T. Muschik, The luminescence of porous Si: The case for the surface state mechanism, J. Lumin. 57(1–6), 271 (1993)

[7]

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites, Phys. Rev. B 48(4), 2827 (1993)

[8]

D. Dai, X. Guo, and J. Fan, Identification of luminescent surface defect in SiC quantum dots, Appl. Phys. Lett. 106(5), 053115 (2015)

[9]

X. Wu, S. Xiong, G. Siu, G. Huang, Y. Mei, Z. Zhang, S. Deng, and C. Tan, Optical emission from excess Si defect centers in Si nanostructures, Phys. Rev. Lett. 91(15), 157402 (2003)

[10]

M. Cahay, Quantum confinement VI: Nanostructured materials and devices, Proceedings of the International Symposium, The Electrochemical Society, 2001

[11]

X. Wu, S. Xiong, D. Fan, Y. Gu, X. Bao, G. Siu, and M. Stokes, Stabilized electronic state and its luminescence at the surface of oxygen-passivated porous silicon, Phys. Rev. B 62(12), R7759 (2000)

[12]

T. W. Kim, C. H. Cho, B. H. Kim, and S. J. Park, Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3, Appl. Phys. Lett. 88(12), 123102 (2006)

[13]

S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, World Scientific, 1994

[14]

S. Wang, C. Zhang, Z. Wang, and X. Zu, Quantum confinement effect in silicon carbide nanostructures: A first principles study, Optoelectron. Rel. Mater 4(6), 771 (2010)

[15]

S. Luo, J. Fan, W. Liu, M. Zhang, Z. Song, C. Lin, X. Wu, and P. K. Chu, Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts, Nanotechnology 17(6), 1695 (2006)

[16]

V. Eskizeybek, A. Avcı, and M. Chhowalla, Structural and optical properties of CdO nanowires synthesized from Cd(OH)2 precursors by calcination, Cryst. Res. Technol. 46(10), 1093 (2011)

[17]

A. Phuruangrat, P. Dumrongrojthanath, O. Yayapao, T. Thongtem, and S. Thongtem, Solvothermal synthesis and photocatalytic properties of CdS nanowires under UV and visible irradiation, Mater. Sci. Semicond. Process. 26, 329 (2014)

[18]

J. Y. Lee, X. Lu, and Q. Lin, High-Q silicon carbide photonic-crystal cavities, Appl. Phys. Lett. 106(4), 041106 (2015)

[19]

H. P. Phan, D. V. Dao, P. Tanner, L. Wang, N. T. Nguyen, Y. Zhu, and S. Dimitrijev, Fundamental piezoresistive coefficients of p-type single crystalline 3CSiC, Appl. Phys. Lett. 104(11), 111905 (2014)

[20]

R. Shao, K. Zheng, Y. Zhang, Y. Li, Z. Zhang, and X. Han, Piezoresistance behaviors of ultra-strained SiC nanowires, Appl. Phys. Lett. 101(23), 233109 (2012)

[21]

H. P. Phan, The Piezoresistive Effect of Top Down p- Type 3C-SiC Nanowires, Springer International Publishing, 2017

[22]

D. Pandey and P. Krishna, The origin of polytype structures, Progress in Crystal growth and Characterization, 7(1–4), 213 (1983)

[23]

G. Li, X. Li, Z. Chen, J. Wang, H. Wang, and R. Che, Large areas of centimeters-long SiC nanowires synthesized by pyrolysis of a polymer precursor by a CVD route, J. Phys. Chem. C 113(41), 17655 (2009)

[24]

G. Peng, Y. Zhou, Y. He, X. Yu, X. A. Zhang, G. Y. Li, and H. Haick, UV-induced SiC nanowire sensors, J. Phys. D Appl. Phys. 48(5), 055102 (2015)

[25]

G. Li, Ph. D. thesis, Synthesis and properties of ultralong SiC and Si3N4 nanowires, College of Science, National University of Defense Technology, China, 2010

[26]

G. Peng, Y. Zhou, Y. He, X. Yu, and G. Li, Fabrication and properties of ultraviolet photo-detectors based on SiC nanowires, Sci. China Phys. Mech. Astron. 55(7), 1168 (2012)

[27]

Y. Li, C. Chen, J. T. Li, Y. Yang, and Z. M. Lin, Surface charges and optical characteristic of colloidal cubic SiC nanocrystals, Nanoscale Res. Lett. 6(1), 454 (2011)

[28]

F. A. Reboredo, L. Pizzagalli, and G. Galli, Computational engineering of the stability and optical gaps of SiC quantum dots, Nano Lett. 4(5), 801 (2004)

[29]

A. M. Rossi, T. E. Murphy, and V. Reipa, Ultraviolet photoluminescence from 6H silicon carbide nanoparticles, Appl. Phys. Lett. 92(25), 253112 (2008)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (44960KB)

907

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/