Evolution of innovative behaviors on scale-free networks

Ying-Ting Lin , Xiao-Pu Han , Bo-Kui Chen , Jun Zhou , Bing-Hong Wang

Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 130308

PDF (972KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 130308 DOI: 10.1007/s11467-018-0767-1
RESEARCH ARTICLE

Evolution of innovative behaviors on scale-free networks

Author information +
History +
PDF (972KB)

Abstract

Innovation, which involves technological transformation and management reorganization, brings about significant changes in modern society. In this paper, to investigate how innovations can be promoted, we propose a game-based model to study the co-evolutionary dynamics of human innovative behaviors. A simulation on scale-free networks is conducted, in which the innovative behavior of each node is determined and updated based on the feedback regarding its innovation, namely the diffusion of the innovation status. Numerical simulations of the model generate a series of patterns, which is consistent with people’s daily experiences and perceptions as regards real-world innovative behaviors. Specifically, various scaling spatiotemporal properties and rich structural impacts on dynamics can be observed. This model provides a novel approach to understand the evolution of innovative behaviors and provides insight for strategy studies of innovation promotion.

Keywords

innovative behaviors / innovation diffusion / evolutionary game / coevolution dynamics / scale-free networks

Cite this article

Download citation ▾
Ying-Ting Lin, Xiao-Pu Han, Bo-Kui Chen, Jun Zhou, Bing-Hong Wang. Evolution of innovative behaviors on scale-free networks. Front. Phys., 2018, 13(4): 130308 DOI:10.1007/s11467-018-0767-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Castellano, S. Fortunato, and V. Loreto, Statistical physics of social dynamics, Rev. Mod. Phys. 81(2), 591 (2009)

[2]

L. F. Costa, J. O. N. Jr Oliveira, G. Travieso, F. A. Rodrigues, P. R. Villas Boas, L. Antiqueira, M. P. Viana, and L. E. Correa Rocha, Analyzing and modeling real world phenomena with complex networks: A survey of applications, Adv. Phys. 60(3), 329 (2011)

[3]

S. Galam, Sociophysics: A Physicists Modeling of Psycho-Political Phenomena, Berlin: Springer, 2012

[4]

D. Stauffer, A biased review of sociophysics, J. Stat. Phys. 151(1–2), 9 (2013)

[5]

W. Z. Zheng, Y. Liang, and J. P. Huang, Equilibrium state and non-equilibrium steady state in an isolated human system, Front. Phys. 9(1), 128 (2014)

[6]

T. T. Chen, B. Zheng, Y. Li, and X.F. Jiang, New approaches in agent-based modeling of complex financial systems, Front. Phys. 12(6), 128905 (2017)

[7]

P. A. Geroski, Models of technology diffusion, Res. Policy 29(4–5), 603 (2000)

[8]

R. Peres, E. Muller, and V. Mahajan, Innovation diffusion and new product growth models: A critical review and research directions, Intern. J. Res. Mar. 27, 91 (2010)

[9]

E. Kiesling, M. Günther, C. Stummer, and L. M. Wakolbinger, Agent-based simulation of innovation diffusion: A review, Cent. Eur. J. Oper. Res. 20(2), 183 (2012)

[10]

N. Meade and T. Islam, Modelling and forecasting the diffusion of innovation- A 25-year review, Int. J. Forecast. 22(3), 519 (2006)

[11]

J. Goldenberg, B. Libai, S. Solomon, N. Jan, and D. Stauffer, Marketing percolation, Physica A 284(1–4), 335 (2000)

[12]

M. Hohnisch, S. Pittnauer, and D. Stauffer, A percolation-based model explaining delayed takeoff in new-product diffusion, Ind. Corp. Change 17(5), 1001 (2008)

[13]

S. Cantono and G. Silverberg, A percolation model of eco-innovation diffusion: The relationship between diffusion, learning economies and subsidies, Technol. Forecast. Soc. 76(4), 487 (2009)

[14]

J. Goldenberg and S. Efroni, Using cellular automata modeling of the emergence of innovations, Technol. Forecast. Soc. 68(3), 293 (2001)

[15]

J. Goldenberg, B. Libai, and E. Muller, Riding the saddle: How cross-market communications can create a major slump in sales, J. Mark. 66(2), 1 (2002)

[16]

S. Moldovan and J. Goldenberg, Cellular automata modeling of resistance to innovations: Effects and solutions, Technol. Forecast. Soc. 71(5), 425 (2004)

[17]

C. E. Laciana and S. L. Rovere, Ising-like agent-based technology diffusion model: Adoption patterns vs. seeding strategies, Physica A 390(6), 1139 (2011)

[18]

C. E. Laciana and N. Oteiza-Aguirre, An agent based multi-optional model for the diffusion of innovations, Physica A 394, 254 (2014)

[19]

M. A. Janssen and W. Jager, Simulating market dynamics: Interactions between consumer psychology and social networks, Artif. Life 9(4), 343 (2003)

[20]

L. Kuandykov and M. Sokolov, Impact of social neighborhood on diffusion of innovation S-curve, Decis. Support Syst. 48(4), 531 (2010)

[21]

H. Choi, S. H. Kim, and J. Lee, Role of network structure and network effects in diffusion of innovations, Ind. Mark. Manage. 39(1), 170 (2010)

[22]

J. D. Bohlmann, R. J. Calantone, and M. Zhao, The effects of market network heterogeneity on innovation diffusion: An agent-based modeling approach, J. Prod. Innov. Manage. 27(5), 741 (2010)

[23]

R. Peres, The impact of network characteristics on the diffusion of innovations, Physica A 402, 330 (2014)

[24]

J. Zhang, F. Xia, Z. Ning, T. M. Bekele, X. Bai, X. Su, and J. Wang, A Hybrid Mechanism for Innovation Diffusion in Social Networks, IEEE Access 4, 5408 (2016)

[25]

H. Dong, W. Hou, and J. Wang, Research on high-tech industry cluster innovation diffusion based on the perspective of complex network: Taking Zhongguancun industrial park as an example, Science and Technology Management Research 36, 149 (2016)

[26]

G. Szabó and G. Fáth, Evolutionary games on graphs, Phys. Rep. 446(4–6), 97 (2007)

[27]

M. Perc and A. Szolnoki, Coevolutionary games- A mini review, Biosystems 99(2), 109 (2010)

[28]

W. Liu, K. Yue, H. Wu, J. Li, D. Liu, and D. Tang, Containment of competitive influence spread in social networks, Knowl. Base. Syst. 109, 266 (2016)

[29]

B. Chopard, M. Droz, and S. Galam, An evolution theory in finite size systems, Eur. Phys. J. B 16(4), 575 (2000)

[30]

A. Montanari and A. Saberi, The spread of innovations in social networks, Proc. Natl. Acad. Sci. USA 107(47), 20196 (2010)

[31]

H. P. Young, The dynamics of social innovation, Proc. Natl. Acad. Sci. USA 108(Suppl. 4), 21285 (2011)

[32]

A. Di Mare and V. Latora, Opinion formation models based on game theory, Int. J. Mod. Phys. C 18(09), 1377 (2007)

[33]

N. Alon, M. Feldman, A. D. Procaccia, and M. Tennenholtz, A note on competitive diffusion through social networks, Inf. Process. Lett. 110(6), 221 (2010)

[34]

R. Takehara, M. Hachimori, and M. Shigeno, A comment on pure-strategy Nash equilibria in competitive diffusion games, Inf. Process. Lett. 112(3), 59 (2012)

[35]

G. Silverberg, The discrete charm of the bourgeoisie: quantum and continuous perspectives on innovation and growth, Res. Policy 31(8–9), 1275 (2002)

[36]

G. Silverberg and B. Verspagen, A percolation model of innovation in complex technology spaces, J. Econ. Dyn. Control 29(1–2), 225 (2005)

[37]

G. Silverberg and B. Verspagen, Self-organization of R&D search in complex technology spaces, J. Econ. Interact. Coord. 2(2), 211 (2007)

[38]

S. Bornholdt, M. H. Jensen, and K. Sneppen, Emergence and decline of scientific paradigms, Phys. Rev. Lett. 106(5), 058701 (2011)

[39]

Y. T. Lin, X. P. Han, and B. H. Wang, Dynamics of human innovative behaviors, Physica A 394, 74 (2014)

[40]

J. Juang and Y. H. Liang, The impact of vaccine success and awareness on epidemic dynamics, Chaos 26(11), 113105 (2016)

[41]

T. Liu, P. Li, Y. Chen, and J. Zhang, Community size effects on epidemic spreading in multiplex social networks, PLoS One 11(3), e0152021 (2016)

[42]

W. Wang, M. Chen, Y. Min, and X. Jin, Structural diversity effects of multilayer networks on the threshold of interacting epidemics, Physica A 443, 254 (2016)

[43]

J. Zhou and Z. Liu, Epidemic spreading in complex networks, Front. Phys. China 3(3), 331 (2008)

[44]

M. Tomochi, H. Murata, and M. Kono, A consumerbased model of competitive diffusion: The multiplicative effects of global and local network externalities, J. Evol. Econ. 15(3), 273 (2005)

[45]

L. Weng, A. Flammini, A. Vespignani, and F. Menczer, Competition among memes in a world with limited attention, Sci. Rep. 2(1), 335 (2012)

[46]

J. P. Gleeson, J. A. Ward, K. P. O’sullivan, and W. T. Lee, Competition-induced criticality in a model of meme popularity, Phys. Rev. Lett. 112(4), 048701 (2014)

[47]

R. Hou, J. Wu, and H. S. Du, Customer social network affects marketing strategy: A simulation analysis based on competitive diffusion model, Physica A 469, 644 (2017)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (972KB)

798

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/