Evolution of innovative behaviors on scale-free networks
Ying-Ting Lin, Xiao-Pu Han, Bo-Kui Chen, Jun Zhou, Bing-Hong Wang
Evolution of innovative behaviors on scale-free networks
Innovation, which involves technological transformation and management reorganization, brings about significant changes in modern society. In this paper, to investigate how innovations can be promoted, we propose a game-based model to study the co-evolutionary dynamics of human innovative behaviors. A simulation on scale-free networks is conducted, in which the innovative behavior of each node is determined and updated based on the feedback regarding its innovation, namely the diffusion of the innovation status. Numerical simulations of the model generate a series of patterns, which is consistent with people’s daily experiences and perceptions as regards real-world innovative behaviors. Specifically, various scaling spatiotemporal properties and rich structural impacts on dynamics can be observed. This model provides a novel approach to understand the evolution of innovative behaviors and provides insight for strategy studies of innovation promotion.
innovative behaviors / innovation diffusion / evolutionary game / coevolution dynamics / scale-free networks
[1] |
C. Castellano, S. Fortunato, and V. Loreto, Statistical physics of social dynamics, Rev. Mod. Phys. 81(2), 591 (2009)
CrossRef
ADS
Google scholar
|
[2] |
L. F. Costa, J. O. N. Jr Oliveira, G. Travieso, F. A. Rodrigues, P. R. Villas Boas, L. Antiqueira, M. P. Viana, and L. E. Correa Rocha, Analyzing and modeling real world phenomena with complex networks: A survey of applications, Adv. Phys. 60(3), 329 (2011)
CrossRef
ADS
Google scholar
|
[3] |
S. Galam, Sociophysics: A Physicists Modeling of Psycho-Political Phenomena, Berlin: Springer, 2012
CrossRef
ADS
Google scholar
|
[4] |
D. Stauffer, A biased review of sociophysics, J. Stat. Phys. 151(1–2), 9 (2013)
CrossRef
ADS
Google scholar
|
[5] |
W. Z. Zheng, Y. Liang, and J. P. Huang, Equilibrium state and non-equilibrium steady state in an isolated human system, Front. Phys. 9(1), 128 (2014)
CrossRef
ADS
Google scholar
|
[6] |
T. T. Chen, B. Zheng, Y. Li, and X.F. Jiang, New approaches in agent-based modeling of complex financial systems, Front. Phys. 12(6), 128905 (2017)
CrossRef
ADS
Google scholar
|
[7] |
P. A. Geroski, Models of technology diffusion, Res. Policy 29(4–5), 603 (2000)
CrossRef
ADS
Google scholar
|
[8] |
R. Peres, E. Muller, and V. Mahajan, Innovation diffusion and new product growth models: A critical review and research directions, Intern. J. Res. Mar. 27, 91 (2010)
|
[9] |
E. Kiesling, M. Günther, C. Stummer, and L. M. Wakolbinger, Agent-based simulation of innovation diffusion: A review, Cent. Eur. J. Oper. Res. 20(2), 183 (2012)
CrossRef
ADS
Google scholar
|
[10] |
N. Meade and T. Islam, Modelling and forecasting the diffusion of innovation- A 25-year review, Int. J. Forecast. 22(3), 519 (2006)
CrossRef
ADS
Google scholar
|
[11] |
J. Goldenberg, B. Libai, S. Solomon, N. Jan, and D. Stauffer, Marketing percolation, Physica A 284(1–4), 335 (2000)
CrossRef
ADS
Google scholar
|
[12] |
M. Hohnisch, S. Pittnauer, and D. Stauffer, A percolation-based model explaining delayed takeoff in new-product diffusion, Ind. Corp. Change 17(5), 1001 (2008)
CrossRef
ADS
Google scholar
|
[13] |
S. Cantono and G. Silverberg, A percolation model of eco-innovation diffusion: The relationship between diffusion, learning economies and subsidies, Technol. Forecast. Soc. 76(4), 487 (2009)
CrossRef
ADS
Google scholar
|
[14] |
J. Goldenberg and S. Efroni, Using cellular automata modeling of the emergence of innovations, Technol. Forecast. Soc. 68(3), 293 (2001)
CrossRef
ADS
Google scholar
|
[15] |
J. Goldenberg, B. Libai, and E. Muller, Riding the saddle: How cross-market communications can create a major slump in sales, J. Mark. 66(2), 1 (2002)
CrossRef
ADS
Google scholar
|
[16] |
S. Moldovan and J. Goldenberg, Cellular automata modeling of resistance to innovations: Effects and solutions, Technol. Forecast. Soc. 71(5), 425 (2004)
CrossRef
ADS
Google scholar
|
[17] |
C. E. Laciana and S. L. Rovere, Ising-like agent-based technology diffusion model: Adoption patterns vs. seeding strategies, Physica A 390(6), 1139 (2011)
CrossRef
ADS
Google scholar
|
[18] |
C. E. Laciana and N. Oteiza-Aguirre, An agent based multi-optional model for the diffusion of innovations, Physica A 394, 254 (2014)
CrossRef
ADS
Google scholar
|
[19] |
M. A. Janssen and W. Jager, Simulating market dynamics: Interactions between consumer psychology and social networks, Artif. Life 9(4), 343 (2003)
CrossRef
ADS
Google scholar
|
[20] |
L. Kuandykov and M. Sokolov, Impact of social neighborhood on diffusion of innovation S-curve, Decis. Support Syst. 48(4), 531 (2010)
CrossRef
ADS
Google scholar
|
[21] |
H. Choi, S. H. Kim, and J. Lee, Role of network structure and network effects in diffusion of innovations, Ind. Mark. Manage. 39(1), 170 (2010)
CrossRef
ADS
Google scholar
|
[22] |
J. D. Bohlmann, R. J. Calantone, and M. Zhao, The effects of market network heterogeneity on innovation diffusion: An agent-based modeling approach, J. Prod. Innov. Manage. 27(5), 741 (2010)
CrossRef
ADS
Google scholar
|
[23] |
R. Peres, The impact of network characteristics on the diffusion of innovations, Physica A 402, 330 (2014)
CrossRef
ADS
Google scholar
|
[24] |
J. Zhang, F. Xia, Z. Ning, T. M. Bekele, X. Bai, X. Su, and J. Wang, A Hybrid Mechanism for Innovation Diffusion in Social Networks, IEEE Access 4, 5408 (2016)
CrossRef
ADS
Google scholar
|
[25] |
H. Dong, W. Hou, and J. Wang, Research on high-tech industry cluster innovation diffusion based on the perspective of complex network: Taking Zhongguancun industrial park as an example, Science and Technology Management Research 36, 149 (2016)
|
[26] |
G. Szabó and G. Fáth, Evolutionary games on graphs, Phys. Rep. 446(4–6), 97 (2007)
CrossRef
ADS
Google scholar
|
[27] |
M. Perc and A. Szolnoki, Coevolutionary games- A mini review, Biosystems 99(2), 109 (2010)
CrossRef
ADS
Google scholar
|
[28] |
W. Liu, K. Yue, H. Wu, J. Li, D. Liu, and D. Tang, Containment of competitive influence spread in social networks, Knowl. Base. Syst. 109, 266 (2016)
CrossRef
ADS
Google scholar
|
[29] |
B. Chopard, M. Droz, and S. Galam, An evolution theory in finite size systems, Eur. Phys. J. B 16(4), 575 (2000)
CrossRef
ADS
Google scholar
|
[30] |
A. Montanari and A. Saberi, The spread of innovations in social networks, Proc. Natl. Acad. Sci. USA 107(47), 20196 (2010)
CrossRef
ADS
Google scholar
|
[31] |
H. P. Young, The dynamics of social innovation, Proc. Natl. Acad. Sci. USA 108(Suppl. 4), 21285 (2011)
CrossRef
ADS
Google scholar
|
[32] |
A. Di Mare and V. Latora, Opinion formation models based on game theory, Int. J. Mod. Phys. C 18(09), 1377 (2007)
CrossRef
ADS
Google scholar
|
[33] |
N. Alon, M. Feldman, A. D. Procaccia, and M. Tennenholtz, A note on competitive diffusion through social networks, Inf. Process. Lett. 110(6), 221 (2010)
CrossRef
ADS
Google scholar
|
[34] |
R. Takehara, M. Hachimori, and M. Shigeno, A comment on pure-strategy Nash equilibria in competitive diffusion games, Inf. Process. Lett. 112(3), 59 (2012)
CrossRef
ADS
Google scholar
|
[35] |
G. Silverberg, The discrete charm of the bourgeoisie: quantum and continuous perspectives on innovation and growth, Res. Policy 31(8–9), 1275 (2002)
CrossRef
ADS
Google scholar
|
[36] |
G. Silverberg and B. Verspagen, A percolation model of innovation in complex technology spaces, J. Econ. Dyn. Control 29(1–2), 225 (2005)
CrossRef
ADS
Google scholar
|
[37] |
G. Silverberg and B. Verspagen, Self-organization of R&D search in complex technology spaces, J. Econ. Interact. Coord. 2(2), 211 (2007)
CrossRef
ADS
Google scholar
|
[38] |
S. Bornholdt, M. H. Jensen, and K. Sneppen, Emergence and decline of scientific paradigms, Phys. Rev. Lett. 106(5), 058701 (2011)
CrossRef
ADS
Google scholar
|
[39] |
Y. T. Lin, X. P. Han, and B. H. Wang, Dynamics of human innovative behaviors, Physica A 394, 74 (2014)
CrossRef
ADS
Google scholar
|
[40] |
J. Juang and Y. H. Liang, The impact of vaccine success and awareness on epidemic dynamics, Chaos 26(11), 113105 (2016)
CrossRef
ADS
Google scholar
|
[41] |
T. Liu, P. Li, Y. Chen, and J. Zhang, Community size effects on epidemic spreading in multiplex social networks, PLoS One 11(3), e0152021 (2016)
CrossRef
ADS
Google scholar
|
[42] |
W. Wang, M. Chen, Y. Min, and X. Jin, Structural diversity effects of multilayer networks on the threshold of interacting epidemics, Physica A 443, 254 (2016)
CrossRef
ADS
Google scholar
|
[43] |
J. Zhou and Z. Liu, Epidemic spreading in complex networks, Front. Phys. China 3(3), 331 (2008)
CrossRef
ADS
Google scholar
|
[44] |
M. Tomochi, H. Murata, and M. Kono, A consumerbased model of competitive diffusion: The multiplicative effects of global and local network externalities, J. Evol. Econ. 15(3), 273 (2005)
CrossRef
ADS
Google scholar
|
[45] |
L. Weng, A. Flammini, A. Vespignani, and F. Menczer, Competition among memes in a world with limited attention, Sci. Rep. 2(1), 335 (2012)
CrossRef
ADS
Google scholar
|
[46] |
J. P. Gleeson, J. A. Ward, K. P. O’sullivan, and W. T. Lee, Competition-induced criticality in a model of meme popularity, Phys. Rev. Lett. 112(4), 048701 (2014)
CrossRef
ADS
Google scholar
|
[47] |
R. Hou, J. Wu, and H. S. Du, Customer social network affects marketing strategy: A simulation analysis based on competitive diffusion model, Physica A 469, 644 (2017)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |