Evolution of innovative behaviors on scale-free networks

Ying-Ting Lin, Xiao-Pu Han, Bo-Kui Chen, Jun Zhou, Bing-Hong Wang

PDF(972 KB)
PDF(972 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 130308. DOI: 10.1007/s11467-018-0767-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Evolution of innovative behaviors on scale-free networks

Author information +
History +

Abstract

Innovation, which involves technological transformation and management reorganization, brings about significant changes in modern society. In this paper, to investigate how innovations can be promoted, we propose a game-based model to study the co-evolutionary dynamics of human innovative behaviors. A simulation on scale-free networks is conducted, in which the innovative behavior of each node is determined and updated based on the feedback regarding its innovation, namely the diffusion of the innovation status. Numerical simulations of the model generate a series of patterns, which is consistent with people’s daily experiences and perceptions as regards real-world innovative behaviors. Specifically, various scaling spatiotemporal properties and rich structural impacts on dynamics can be observed. This model provides a novel approach to understand the evolution of innovative behaviors and provides insight for strategy studies of innovation promotion.

Keywords

innovative behaviors / innovation diffusion / evolutionary game / coevolution dynamics / scale-free networks

Cite this article

Download citation ▾
Ying-Ting Lin, Xiao-Pu Han, Bo-Kui Chen, Jun Zhou, Bing-Hong Wang. Evolution of innovative behaviors on scale-free networks. Front. Phys., 2018, 13(4): 130308 https://doi.org/10.1007/s11467-018-0767-1

References

[1]
C. Castellano, S. Fortunato, and V. Loreto, Statistical physics of social dynamics, Rev. Mod. Phys. 81(2), 591 (2009)
CrossRef ADS Google scholar
[2]
L. F. Costa, J. O. N. Jr Oliveira, G. Travieso, F. A. Rodrigues, P. R. Villas Boas, L. Antiqueira, M. P. Viana, and L. E. Correa Rocha, Analyzing and modeling real world phenomena with complex networks: A survey of applications, Adv. Phys. 60(3), 329 (2011)
CrossRef ADS Google scholar
[3]
S. Galam, Sociophysics: A Physicists Modeling of Psycho-Political Phenomena, Berlin: Springer, 2012
CrossRef ADS Google scholar
[4]
D. Stauffer, A biased review of sociophysics, J. Stat. Phys. 151(1–2), 9 (2013)
CrossRef ADS Google scholar
[5]
W. Z. Zheng, Y. Liang, and J. P. Huang, Equilibrium state and non-equilibrium steady state in an isolated human system, Front. Phys. 9(1), 128 (2014)
CrossRef ADS Google scholar
[6]
T. T. Chen, B. Zheng, Y. Li, and X.F. Jiang, New approaches in agent-based modeling of complex financial systems, Front. Phys. 12(6), 128905 (2017)
CrossRef ADS Google scholar
[7]
P. A. Geroski, Models of technology diffusion, Res. Policy 29(4–5), 603 (2000)
CrossRef ADS Google scholar
[8]
R. Peres, E. Muller, and V. Mahajan, Innovation diffusion and new product growth models: A critical review and research directions, Intern. J. Res. Mar. 27, 91 (2010)
[9]
E. Kiesling, M. Günther, C. Stummer, and L. M. Wakolbinger, Agent-based simulation of innovation diffusion: A review, Cent. Eur. J. Oper. Res. 20(2), 183 (2012)
CrossRef ADS Google scholar
[10]
N. Meade and T. Islam, Modelling and forecasting the diffusion of innovation- A 25-year review, Int. J. Forecast. 22(3), 519 (2006)
CrossRef ADS Google scholar
[11]
J. Goldenberg, B. Libai, S. Solomon, N. Jan, and D. Stauffer, Marketing percolation, Physica A 284(1–4), 335 (2000)
CrossRef ADS Google scholar
[12]
M. Hohnisch, S. Pittnauer, and D. Stauffer, A percolation-based model explaining delayed takeoff in new-product diffusion, Ind. Corp. Change 17(5), 1001 (2008)
CrossRef ADS Google scholar
[13]
S. Cantono and G. Silverberg, A percolation model of eco-innovation diffusion: The relationship between diffusion, learning economies and subsidies, Technol. Forecast. Soc. 76(4), 487 (2009)
CrossRef ADS Google scholar
[14]
J. Goldenberg and S. Efroni, Using cellular automata modeling of the emergence of innovations, Technol. Forecast. Soc. 68(3), 293 (2001)
CrossRef ADS Google scholar
[15]
J. Goldenberg, B. Libai, and E. Muller, Riding the saddle: How cross-market communications can create a major slump in sales, J. Mark. 66(2), 1 (2002)
CrossRef ADS Google scholar
[16]
S. Moldovan and J. Goldenberg, Cellular automata modeling of resistance to innovations: Effects and solutions, Technol. Forecast. Soc. 71(5), 425 (2004)
CrossRef ADS Google scholar
[17]
C. E. Laciana and S. L. Rovere, Ising-like agent-based technology diffusion model: Adoption patterns vs. seeding strategies, Physica A 390(6), 1139 (2011)
CrossRef ADS Google scholar
[18]
C. E. Laciana and N. Oteiza-Aguirre, An agent based multi-optional model for the diffusion of innovations, Physica A 394, 254 (2014)
CrossRef ADS Google scholar
[19]
M. A. Janssen and W. Jager, Simulating market dynamics: Interactions between consumer psychology and social networks, Artif. Life 9(4), 343 (2003)
CrossRef ADS Google scholar
[20]
L. Kuandykov and M. Sokolov, Impact of social neighborhood on diffusion of innovation S-curve, Decis. Support Syst. 48(4), 531 (2010)
CrossRef ADS Google scholar
[21]
H. Choi, S. H. Kim, and J. Lee, Role of network structure and network effects in diffusion of innovations, Ind. Mark. Manage. 39(1), 170 (2010)
CrossRef ADS Google scholar
[22]
J. D. Bohlmann, R. J. Calantone, and M. Zhao, The effects of market network heterogeneity on innovation diffusion: An agent-based modeling approach, J. Prod. Innov. Manage. 27(5), 741 (2010)
CrossRef ADS Google scholar
[23]
R. Peres, The impact of network characteristics on the diffusion of innovations, Physica A 402, 330 (2014)
CrossRef ADS Google scholar
[24]
J. Zhang, F. Xia, Z. Ning, T. M. Bekele, X. Bai, X. Su, and J. Wang, A Hybrid Mechanism for Innovation Diffusion in Social Networks, IEEE Access 4, 5408 (2016)
CrossRef ADS Google scholar
[25]
H. Dong, W. Hou, and J. Wang, Research on high-tech industry cluster innovation diffusion based on the perspective of complex network: Taking Zhongguancun industrial park as an example, Science and Technology Management Research 36, 149 (2016)
[26]
G. Szabó and G. Fáth, Evolutionary games on graphs, Phys. Rep. 446(4–6), 97 (2007)
CrossRef ADS Google scholar
[27]
M. Perc and A. Szolnoki, Coevolutionary games- A mini review, Biosystems 99(2), 109 (2010)
CrossRef ADS Google scholar
[28]
W. Liu, K. Yue, H. Wu, J. Li, D. Liu, and D. Tang, Containment of competitive influence spread in social networks, Knowl. Base. Syst. 109, 266 (2016)
CrossRef ADS Google scholar
[29]
B. Chopard, M. Droz, and S. Galam, An evolution theory in finite size systems, Eur. Phys. J. B 16(4), 575 (2000)
CrossRef ADS Google scholar
[30]
A. Montanari and A. Saberi, The spread of innovations in social networks, Proc. Natl. Acad. Sci. USA 107(47), 20196 (2010)
CrossRef ADS Google scholar
[31]
H. P. Young, The dynamics of social innovation, Proc. Natl. Acad. Sci. USA 108(Suppl. 4), 21285 (2011)
CrossRef ADS Google scholar
[32]
A. Di Mare and V. Latora, Opinion formation models based on game theory, Int. J. Mod. Phys. C 18(09), 1377 (2007)
CrossRef ADS Google scholar
[33]
N. Alon, M. Feldman, A. D. Procaccia, and M. Tennenholtz, A note on competitive diffusion through social networks, Inf. Process. Lett. 110(6), 221 (2010)
CrossRef ADS Google scholar
[34]
R. Takehara, M. Hachimori, and M. Shigeno, A comment on pure-strategy Nash equilibria in competitive diffusion games, Inf. Process. Lett. 112(3), 59 (2012)
CrossRef ADS Google scholar
[35]
G. Silverberg, The discrete charm of the bourgeoisie: quantum and continuous perspectives on innovation and growth, Res. Policy 31(8–9), 1275 (2002)
CrossRef ADS Google scholar
[36]
G. Silverberg and B. Verspagen, A percolation model of innovation in complex technology spaces, J. Econ. Dyn. Control 29(1–2), 225 (2005)
CrossRef ADS Google scholar
[37]
G. Silverberg and B. Verspagen, Self-organization of R&D search in complex technology spaces, J. Econ. Interact. Coord. 2(2), 211 (2007)
CrossRef ADS Google scholar
[38]
S. Bornholdt, M. H. Jensen, and K. Sneppen, Emergence and decline of scientific paradigms, Phys. Rev. Lett. 106(5), 058701 (2011)
CrossRef ADS Google scholar
[39]
Y. T. Lin, X. P. Han, and B. H. Wang, Dynamics of human innovative behaviors, Physica A 394, 74 (2014)
CrossRef ADS Google scholar
[40]
J. Juang and Y. H. Liang, The impact of vaccine success and awareness on epidemic dynamics, Chaos 26(11), 113105 (2016)
CrossRef ADS Google scholar
[41]
T. Liu, P. Li, Y. Chen, and J. Zhang, Community size effects on epidemic spreading in multiplex social networks, PLoS One 11(3), e0152021 (2016)
CrossRef ADS Google scholar
[42]
W. Wang, M. Chen, Y. Min, and X. Jin, Structural diversity effects of multilayer networks on the threshold of interacting epidemics, Physica A 443, 254 (2016)
CrossRef ADS Google scholar
[43]
J. Zhou and Z. Liu, Epidemic spreading in complex networks, Front. Phys. China 3(3), 331 (2008)
CrossRef ADS Google scholar
[44]
M. Tomochi, H. Murata, and M. Kono, A consumerbased model of competitive diffusion: The multiplicative effects of global and local network externalities, J. Evol. Econ. 15(3), 273 (2005)
CrossRef ADS Google scholar
[45]
L. Weng, A. Flammini, A. Vespignani, and F. Menczer, Competition among memes in a world with limited attention, Sci. Rep. 2(1), 335 (2012)
CrossRef ADS Google scholar
[46]
J. P. Gleeson, J. A. Ward, K. P. O’sullivan, and W. T. Lee, Competition-induced criticality in a model of meme popularity, Phys. Rev. Lett. 112(4), 048701 (2014)
CrossRef ADS Google scholar
[47]
R. Hou, J. Wu, and H. S. Du, Customer social network affects marketing strategy: A simulation analysis based on competitive diffusion model, Physica A 469, 644 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(972 KB)

Accesses

Citations

Detail

Sections
Recommended

/