Analytical approach to quantum phase transitions of ultracold Bose gases in bipartite optical lattices using the generalized Green’s function method

Zhi Lin, Jun Zhang, Ying Jiang

PDF(1134 KB)
PDF(1134 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 136401. DOI: 10.1007/s11467-018-0751-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Analytical approach to quantum phase transitions of ultracold Bose gases in bipartite optical lattices using the generalized Green’s function method

Author information +
History +

Abstract

In order to investigate the quantum phase transitions and the time-of-flight absorption pictures analytically in a systematic way for ultracold Bose gases in bipartite optical lattices, we present a generalized Green’s function method. Utilizing this method, we study the quantum phase transitions of ultracold Bose gases in two types of bipartite optical lattices, i.e., a hexagonal lattice with normal Bose–Hubbard interaction and a d-dimensional hypercubic optical lattice with extended Bose–Hubbard interaction. Furthermore, the time-of-flight absorption pictures of ultracold Bose gases in these two types of lattices are also calculated analytically. In hexagonal lattice, the time-of-flight interference patterns of ultracold Bose gases obtained by our analytical method are in good qualitative agreement with the experimental results of Soltan-Panahi, et al. [Nat. Phys. 7, 434 (2011)]. In square optical lattice, the emergence of peaks at (±πaπa) in the time-of-flight absorption pictures, which is believed to be a sort of evidence of the existence of a supersolid phase, is clearly seen when the system enters the compressible phase from charge-density-wave phase.

Keywords

ultracold Bose gases / quantum phase transition / bipartite optical lattice / generalized / Green’s function method / time-of-flight absorption picture

Cite this article

Download citation ▾
Zhi Lin, Jun Zhang, Ying Jiang. Analytical approach to quantum phase transitions of ultracold Bose gases in bipartite optical lattices using the generalized Green’s function method. Front. Phys., 2018, 13(4): 136401 https://doi.org/10.1007/s11467-018-0751-9

References

[1]
M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature 415(6867), 39 (2002)
CrossRef ADS Google scholar
[2]
M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen(De), and U. Sen, Ultracold atomic gases in optical lattices: Mimicking condensed matter physics and beyond, Adv. Phys. 56(2), 243 (2007)
CrossRef ADS Google scholar
[3]
I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008); and the references therein.
CrossRef ADS Google scholar
[4]
S. Sachdev, Quantum Phase Transitions, Cambridge: Cambridge University Press, 1999
[5]
M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Boson localization and the superfluidinsulator transition, Phys. Rev. B 40(1), 546 (1989)
CrossRef ADS Google scholar
[6]
D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Cold bosonic atoms in optical lattices, Phys. Rev. Lett. 81(15), 3108 (1998)
CrossRef ADS Google scholar
[7]
J. K. Freericks and H. Monien, Strong-coupling expansions for the pure and disordered Bose–Hubbard model, Phys. Rev. B 53(5), 2691 (1996)
CrossRef ADS Google scholar
[8]
B. Capogrosso-Sansone, N. V. Prokof’ev, and B. V. Svistunov, Phase diagram and thermodynamics of the threedimensional Bose-Hubbard model, Phys. Rev. B 75(13), 134302 (2007)
CrossRef ADS Google scholar
[9]
F. E. A. dos Santos and A. Pelster, Quantum phase diagram of bosons in optical lattices, Phy. Rev. A 79(1), 013614 (2009)
CrossRef ADS Google scholar
[10]
Z. Lin, J. Zhang, and Y. Jiang, Quantum phase transitions of ultracold Bose systems in nonrectangular optical lattices, Phys. Rev. A 85(2), 023619 (2012)
CrossRef ADS Google scholar
[11]
N. Teichmann, D. Hinrichs, and M. Holthaus, Reference data for phase diagrams of triangular and hexagonal bosonic lattices, Europhys. Lett. 91(1), 10004 (2010)
CrossRef ADS Google scholar
[12]
J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 3rd Ed., Clarendon Press, 1996
[13]
H. Kleinert and V. Schulte-Frohlinde, Critical Properties of ϕ4-Theories, World Scientific, 2001
CrossRef ADS Google scholar
[14]
V. A. Kashurnikov, N. V. Prokof’ev, and B. V. Svistunov, Revealing the superfluid–Mott-insulator transition in an optical lattice, Phys. Rev. A 66, 031601(R) (2002)
[15]
A. Hoffmann and A. Pelster, Visibility of cold atomic gases in optical lattices for finite temperatures, Phys. Rev. A 79(5), 053623 (2009)
CrossRef ADS Google scholar
[16]
Z. Lin, J. Zhang, and Y. Jiang, Visibility of ultracold Bose system in triangular optical lattices, Phys. Rev. A 86(3), 033625 (2012)
CrossRef ADS Google scholar
[17]
W. Metzner, Linked-cluster expansion around the atomic limit of the Hubbard model, Phys. Rev. B 43(10), 8549 (1991)
CrossRef ADS Google scholar
[18]
M. Ohliger, Diploma thesis, Free University of Berlin, 2008
[19]
C. Becker, P. Soltan-Panahi, J. Kronjäger, S. Dörscher, K. Bongs, and K. Sengstock, Ultracold quantum gases in triangular optical lattices, New J. Phys. 12(6), 065025 (2010)
CrossRef ADS Google scholar
[20]
T. D. Graß, F. E. A. dos Santos, and A. Pelster, Excitation spectra of bosons in optical lattices from the Schwinger–Keldysh calculation, Phys. Rev. A 84(1), 013613 (2011)
CrossRef ADS Google scholar
[21]
T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau, The physics of dipolar bosonic quantum gases, Rep. Prog. Phys. 72(12), 126401 (2009)
CrossRef ADS Google scholar
[22]
C. Trefzger, C. Menotti, B. Capogrosso-Sansone, and M. Lewenstein, Ultracold dipolar gases in optical lattices, J. Phys. At. Mol. Opt. Phys. 44(19), 193001 (2011)
CrossRef ADS Google scholar
[23]
A. Lauer, D. Muth, and M. Fleischhauer, Transportinduced melting of crystals of Rydberg dressed atoms in a one-dimensional lattice, New J. Phys. 14(9), 095009 (2012)
CrossRef ADS Google scholar
[24]
P. Schauß, M. Cheneau, M. Endres, T. Fukuhara, S. Hild, A. Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch, Observation of spatially ordered structures in a two-dimensional Rydberg gas, Nature 491(7422), 87 (2012)
CrossRef ADS Google scholar
[25]
A. Safavi-Naini, S. G. Soyler, G. Pupillo, H. R. Sadeghpour, and B. Capogrosso-Sansone, Quantum phases of dipolar bosons in bilayer geometry, New J. Phys. 15(1), 013036 (2013)
CrossRef ADS Google scholar
[26]
E. Altman, W. Hofstetter, E. Demler, and M. D. Lukin, Phase diagram of two-component bosons on an optical lattice, New J. Phys. 5, 113 (2003)
CrossRef ADS Google scholar
[27]
P. Soltan-Panahi, D. Lühmann, J. Struck, P. Windpassinger, and K. Sengstock, Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices, Nat. Phys. 8, 71 (2012)
[28]
A. Eckardt, P. Hauke, P. Soltan-Panahi, C. Becker, K. Sengstock, and M. Lewenstein, Frustrated quantum antiferromagnetism with ultracold bosons in a triangular lattice, Europhys. Lett. 89(1), 10010 (2010)
CrossRef ADS Google scholar
[29]
S. Pielawa, E. Berg, and S. Sachdev, Frustrated quantum Ising spins simulated by spinless bosons in a tilted lattice: From a quantum liquid to antiferromagnetic order, Phys. Rev. B 86(18), 184435 (2012)
CrossRef ADS Google scholar
[30]
J. Ye, K. Zhang, Y. Li, Y. Chen, and W. Zhang, Optical Bragg, atomic Bragg and cavity QED detections of quantum phases and excitation spectra of ultracold atoms in bipartite and frustrated optical lattices, Ann. Phys. 328, 103 (2013)
CrossRef ADS Google scholar
[31]
S. Peil, J. V. Porto, B. Laburthe Tolra, J. M. Obrecht, B. E. King, M. Subbotin, S. L. Rolston, and W. D. Phillips, Patterned loading of a Bose-Einstein condensate into an optical lattice, Phys. Rev. A 67, 051603(R) (2003)
[32]
J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V. Porto, Lattice of double wells for manipulating pairs of cold atoms, Phys. Rev. A 73(3), 033605 (2006)
CrossRef ADS Google scholar
[33]
S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, and I. Bloch, Direct observation of second-order atom tunnelling, Nature 448(7157), 1029 (2007)
CrossRef ADS Google scholar
[34]
P. Cheinet, S. Trotzky, M. Feld, U. Schnorrberger, M. Moreno-Cardoner, S. Fölling, and I. Bloch, Counting atoms using interaction blockade in an optical superlattice, Phys. Rev. Lett. 101(9), 090404 (2008)
CrossRef ADS Google scholar
[35]
G. B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath, and D. M. Stamper-Kurn, Ultracold atoms in a tunable optical Kagome lattice, Phys. Rev. Lett. 108(4), 045305 (2012)
CrossRef ADS Google scholar
[36]
T. Wang, X. F. Zhang, S. Eggert, and A. Pelster, Generalized effective-potential Landau theory for bosonic quadratic superlattices, Phys. Rev. A 87(6), 063615 (2013)
CrossRef ADS Google scholar
[37]
M. Ohliger and A. Pelster, M. Ohliger, A. Pelster, and J. World, Green’s Function Approach to the Bose- Hubbard Model, World Journal of Condensed Matter Physics 3, 125 (2013), arXiv: 0810.4399
[38]
P. Soltan-Panahi, J. Struck, P. Hauke, A. Bick, W. Plenkers, G. Meineke, C. Becker, P. Windpassinger, M. Lewenstein, and K. Sengstock, Multi-component quantum gases in spin-dependent hexagonal lattices, Nat. Phys. 7(5), 434 (2011)
[39]
M. Iskin and J. K. Freericks, Strong-coupling perturbation theory for the extended Bose-Hubbard model, Phys. Rev. A 79(5), 053634 (2009)
CrossRef ADS Google scholar
[40]
M. Iskin and J. K. Freericks, Momentum distribution of the insulating phases of the extended Bose-Hubbard model, Phys. Rev. A 80(6), 063610 (2009)
CrossRef ADS Google scholar
[41]
D. van Oosten, P. van der Straten, and H. T. C. Stoof, Quantum phases in an optical lattice, Phys. Rev. A 63(5), 053601 (2001)
CrossRef ADS Google scholar
[42]
B. Bradlyn, F. E. A. dos Santos, and A. Pelster, Effective action approach for quantum phase transitions in bosonic lattices, Phys. Rev. A 79(1), 013615 (2009)
CrossRef ADS Google scholar
[43]
M. Peskin and D. Schröder, An Introduction to Quantum Field Theory, Westview Press, Boulder, 1995
[44]
D. L. Kovrizhin, G. V. Pai, and S. Sinha, Density wave and supersolid phases of correlated bosons in an optical lattice, Europhys. Lett. 72(2), 162 (2005)
CrossRef ADS Google scholar
[45]
M. Köhl, H. Moritz, T. Stöferle, K. Günter, and T. Esslinger, Fermionic atoms in a three dimensional optical lattice: Observing Fermi surfaces, dynamics, and interactions, Phys. Rev. Lett. 94(8), 080403 (2005)
CrossRef ADS Google scholar
[46]
C. Becker, P. Soltan-Panahi, J. Kronjäger, S. Dörscher, K. Bongs, and K. Sengstock, Ultracold quantum gases in triangular optical lattices, New J. Phys. 12(6), 065025 (2010)
CrossRef ADS Google scholar
[47]
M. Köhl, H. Moritz, T. Stöferle, C. Schori, and T. Esslinger, Superfluid to Mott insulator transition in one, two, and three dimensions, J. Low Temp. Phys. 138(3–4), 635 (2005)
CrossRef ADS Google scholar
[48]
I. B. Spielman, W. D. Phillips, and J. V. Porto, Mottinsulator transition in a two-dimensional atomic Bose gas, Phys. Rev. Lett. 98(8), 080404 (2007)
CrossRef ADS Google scholar
[49]
M. Iskin, Route to supersolidity for the extended Bose- Hubbard model, Phys. Rev. A 83, 051606(R) (2011)
[50]
M. Boninsegni and N. V. Prokof’ev, Supersolids: What and where are they? Rev. Mod. Phys. 84(2), 759 (2012)
CrossRef ADS Google scholar
[51]
O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.S. Lühmann, B. A. Malomed, T. Sowiński, and J. Zakrzewski, Non-standard Hubbard models in optical lattices: A review, Rep. Prog. Phys. 78(6), 066001 (2015)
CrossRef ADS Google scholar
[52]
M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold Atoms in Optical Lattices: Simulating Quantum Many- Body Systems, Oxford: Oxford University Press, 2012, pp 182–183
CrossRef ADS Google scholar
[53]
K. Góral, K. Rza¸żewski, and T. Pfau, Bose–Einstein condensation with magnetic dipole-dipole forces, Phys. Rev. A 61, 051601(R) (2000)
[54]
K. Góral and L. Santos, Ground state and elementary excitations of single and binary Bose-Einstein condensates of trapped dipolar gases, Phys. Rev. A 66(2), 023613 (2002)
CrossRef ADS Google scholar
[55]
S. Kotochigova and E. Tiesinga, Controlling polar molecules in optical lattices, Phys. Rev. A 73, 041405(R)
CrossRef ADS Google scholar
[56]
T. Sowiński, O. Dutta, P. Hauke, L. Tagliacozzo, and M. Lewenstein, Dipolar molecules in optical lattices, Phys. Rev. Lett. 108(11), 115301 (2012)
CrossRef ADS Google scholar
[57]
S. Baier, M. J. Mark, D. Petter, K. Aikawa, L. Chomaz, Z. Cai, M. Baranov, P. Zoller, and F. Ferlaino, Extended Bose–Hubbard models with ultracold magnetic atoms, Science 352(6282), 201 (2016)
CrossRef ADS Google scholar
[58]
Disgusting ghost peaks are well known in cubic lattice systems [15]. Our method shows the existence of ghost peaks in square lattice when J/U>(J/U)c, but no ghost peak in triangular [16] and hexagonal lattice for arbitrary J/U. Thus, the existence of disgusting ghost peaks is not only due to the divergence of re-summed Green’ function, but also depends on the lattice structure or some unknown reasons. At the critical point (V ˜0= V ˜0c ), the ground state of the system is neither localized phases (MI or CDW) nor compressible phases (SS or SF), but it includes characteristic fingerprints of the physical properties of both localized and compressible phases. At V ˜0c , some tiny satellite peaks appear in ‘SS’ phase but not in ‘SF’ phase. The appearance of those tiny peaks can be deemed to be an evidence of ‘SS’ phase, since it coincides with the feature of ‘SS’ phase. In the case of J/U>(J/U)c, our theory may not be exactly solid, but it is available for triangular [16] and hexagonal systems. The above-mentioned argument indicates that when J/U>(J/U)c, if these satellite peaks appear in SS phase, these are real peaks; but they should be taken as ghost peaks in SF phases if existing, since there is no such peaks at the critical point where our theory is valid and it also does not coincide with the features of SF phase.
[59]
V. W. Scarola, E. Demler, and S. Das Sarma, Searching for a supersolid in cold-atom optical lattices, Phys. Rev. A 73, 051601(R) (2006)

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1134 KB)

Accesses

Citations

Detail

Sections
Recommended

/