First-principles investigation of quantum transport in GeP3 nanoribbon-based tunneling junctions
Qiang Wang, Jian-Wei Li, Bin Wang, Yi-Hang Nie
First-principles investigation of quantum transport in GeP3 nanoribbon-based tunneling junctions
Two-dimensional (2D) GeP3 has recently been theoretically proposed as a new low-dimensional material [Nano Lett. 17(3), 1833 (2017)]. In this manuscript, we propose a first-principles calculation to investigate the quantum transport properties of several GeP3 nanoribbon-based atomic tunneling junctions. Numerical results indicate that monolayer GeP3 nanoribbons show semiconducting behavior, whereas trilayer GeP3 nanoribbons express metallic behavior owing to the strong interaction between each of the layers. This behavior is in accordance with that proposed in two-dimensional GeP3 layers. The transmission coefficient T(E) of tunneling junctions is sensitive to the connecting formation between the central monolayer GeP3 nanoribbon and the trilayer GeP3 nanoribbon at both ends. The T(E) value of the bottom-connecting tunneling junction is considerably larger than those of the middle-connecting and top-connecting ones. With increases in gate voltage, the conductances increase for the bottom-connecting and middle-connecting tunneling junctions, but decrease for the top-connecting tunneling junctions. In addition, the conductance decreases exponentially with respect to the length of the central monolayer GeP3 nanoribbon for all the tunneling junctions. I–V curves show approximately linear behavior for the bottom-connecting and middle-connecting structures, but exhibit negative differential resistance for the top-connecting structures. The physics of each phenomenon is analyzed in detail.
quantum transport / GeP3 tunneling junctions / NEGF-DFT
[1] |
Y. Jing, Y. Ma, Y. Li, and T. Heine, GeP3: A small indirect band gap 2D crystal with high carrier mobility and strong interlayer quantum confinement, Nano Lett. 17(3), 1833 (2017)
CrossRef
ADS
Google scholar
|
[2] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef
ADS
Google scholar
|
[3] |
S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)
CrossRef
ADS
Google scholar
|
[4] |
F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, and V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage, Science 347(6217), 1246501 (2015)
CrossRef
ADS
Google scholar
|
[5] |
S. D. Sarma and S. Adam, E. H. wang and E. Rossi, Electronic transport in two-dimensional graphene, Rev. Mod. Phys. 83(407), 407 (2011)
CrossRef
ADS
Google scholar
|
[6] |
A. H. N. Castro, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(109), 109 (2009)
CrossRef
ADS
Google scholar
|
[7] |
A. Lherbier, X. Blase, Y. M. Niquet, F. Triozon, and S. Roche, Charge transport in chemically doped 2D graphene, Phys. Rev. Lett. 101(3), 036808 (2008)
CrossRef
ADS
Google scholar
|
[8] |
B. Z. Rameshti and A. G. Moghaddam, Spin-dependent Seebeck effect and spin caloritronics in magnetic graphene, Phys. Rev. B 91(15), 155407 (2015)
CrossRef
ADS
Google scholar
|
[9] |
Y. Xing, Q. Sun, and J. Wang, Nernst and Seebeck effects in a graphene nanoribbon, Phys. Rev. B 80(23), 235411 (2009)
CrossRef
ADS
Google scholar
|
[10] |
B. Wang, J. Li, F. Xu, Y. Wei, J. Wang, and H. Guo, Transient dynamics of magnetic Co-graphene systems, Nanoscale 7(22), 10030 (2015)
CrossRef
ADS
Google scholar
|
[11] |
A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, and Y. Takamura, Experimental evidence for epitaxial silicene on diboride thin films, Phys. Rev. Lett. 108(24), 245501 (2012)
CrossRef
ADS
Google scholar
|
[12] |
P. Vogt, P. D. Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. L. Lay, Silicene: compelling experimental evidence for Graphene like two-dimensional silicon, Phys. Rev. Lett. 108(15), 155501 (2012)
CrossRef
ADS
Google scholar
|
[13] |
A. Subedi, L. Zhang, D. J. Singh, and M. H. Du, Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconductivity, Phys. Rev. B 78(13) (2008)
|
[14] |
D. Xiao, G. B. Liu, W. Feng, X. Xu and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett. 108, 196802 (2012)
CrossRef
ADS
Google scholar
|
[15] |
M. Ramakrishna, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, MoS2 and WS2 analogues of graphene, Angew. Chem. Int. Ed. 49(24), 4059 (2010)
CrossRef
ADS
Google scholar
|
[16] |
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
CrossRef
ADS
Google scholar
|
[17] |
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
CrossRef
ADS
Google scholar
|
[18] |
L. Zhang, L. Wan, Y. Yu, B. Wang, F. Xu, Y. Wei, and Y. Zhao, Modulation of electronic structure of armchair MoS2 nanoribbon, J. Phys. Chem. C 119(38), 22164 (2015)
CrossRef
ADS
Google scholar
|
[19] |
F. Xia, H. Wang, and Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics, Nat. Commun. 5, 4458 (2008)
|
[20] |
L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)
CrossRef
ADS
Google scholar
|
[21] |
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)
CrossRef
ADS
Google scholar
|
[22] |
C. Y. Zhi, Y. Bando, C. C. Tang, H. Kuwahara, and D. Golberg, Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties, Adv. Mater. 21(28), 2889 (2009)
CrossRef
ADS
Google scholar
|
[23] |
J. H. Warner, M. H. Rümmeli, A. Bachmatiuk, and B. Büchner, Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation, ACS Nano 4(3), 1299 (2010)
CrossRef
ADS
Google scholar
|
[24] |
A. Nag, K. Raidongia, K. P. S. S. Hembram, R. Datta, U. V. Waghmare, and C. N. R. Rao, Graphene analogues of BN: Novel synthesis and properties, ACS Nano 4(3), 1539 (2010)
CrossRef
ADS
Google scholar
|
[25] |
P. Miró, M. Audiffred, and T. Heine, An atlas of twodimensional materials, Chem. Soc. Rev. 43(18), 6537 (2014)
CrossRef
ADS
Google scholar
|
[26] |
C. L. Haynes and R. P. Van Duyne, Nanosphere lithography: A versatile nanofabrication tool for studies of size dependent nanoparticle optics, J. Phys. Chem. B 105(24), 5599 (2001)
CrossRef
ADS
Google scholar
|
[27] |
J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russel, Photonic band cap guidance in optical fibers, Science 282(5393), 1476 (1998)
CrossRef
ADS
Google scholar
|
[28] |
A. V. Krasheninnikov, and K. Nordlund, Ion and electron irradiation-induced effects in nanostructured materials, J. Appl. Phys. 107(7), 071301 (2010)
CrossRef
ADS
Google scholar
|
[29] |
Z. H. Qiao, S. A. Yang, B. Wang, Y. G. Yao, and Q. Niu, Spin-polarized and valley helical edge modes in graphene nanoribbons, Phys. Rev. B 84(3), 035431 (2011)
CrossRef
ADS
Google scholar
|
[30] |
B. Wang and J. Wang, First-principles investigation of transport properties through longitudinal unzipped carbon nanotubes, Phys. Rev. B 81(4), 045425 (2010)
CrossRef
ADS
Google scholar
|
[31] |
W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, Optical properties of two interacting gold nanoparticles, Opt. Commun. 220(1–3), 137 (2003)
CrossRef
ADS
Google scholar
|
[32] |
D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett. 108(19), 196802 (2012)
CrossRef
ADS
Google scholar
|
[33] |
W. Qi, H. Zhao, Y. Wu, H. Zeng, T. Tao, C. Chen, C. Kuang, S. Zhou, and Y. Huang, Facile synthesis of layer structured GeP3/C with stable chemical bonding for enhanced lithium-ion storage, Sci. Rep. 7, 43582 (2017)
CrossRef
ADS
Google scholar
|
[34] |
C. Zhang, Y. Jiao, T. He, F. Ma, L. Kou, T. Liao, S. Bottle, and A. Du, Two-dimensional GeP3 as a high capacity electrode material for Li-ion batteries, Phys. Chem. Chem. Phys. 19(38), 25886 (2017)
CrossRef
ADS
Google scholar
|
[35] |
W. X. Lai, C. Zhang, and Z. S. Ma, Single molecular shuttle junction: Shot noise and decoherence, Front. Phys. 10(1), 108501 (2015)
CrossRef
ADS
Google scholar
|
[36] |
Z. Y. Ning, J. S. Qiao, W. Ji, and H. Guo, Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions, Front. Phys. 9(6), 780 (2014)
CrossRef
ADS
Google scholar
|
[37] |
Y. Cai, G. Zhang, and Y. W. Zhang, Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons, J. Am. Chem. Soc. 136(17), 6269 (2014)
CrossRef
ADS
Google scholar
|
[38] |
Y. Zhang, X. H. Yan, Y. D. Guo, and Y. Xiao, Magnetization distribution and spin transport of graphene/h- BN/graphene nanoribbon-based magnetic tunnel junction, Phys. Lett. A 381(35), 2949 (2017)
CrossRef
ADS
Google scholar
|
[39] |
J. W. Li, B. Wang, Y. J. Yu, Y. D. Wei, Z. Z. Yu, and Y. Wang, Spin-resolved quantum transport in graphenebased nanojunctions, Front. Phys. 12(4) (2016)
|
[40] |
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef
ADS
Google scholar
|
[41] |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef
ADS
Google scholar
|
[42] |
J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100(13), 136406 (2008)
CrossRef
ADS
Google scholar
|
[43] |
H. J. Monkhorst and J. D. Pack, Special points for Brillouin zone integrations, Phys. Rev. B 13(12), 5188 (1976)
CrossRef
ADS
Google scholar
|
[44] |
J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)
CrossRef
ADS
Google scholar
|
[45] |
D. Hamann, M. Schlüter, and C. Chiang, Normconserving pseudopotentials, Phys. Rev. Lett. 43(20), 1494 (1979)
CrossRef
ADS
Google scholar
|
[46] |
P. Ordejón, E. Artacho, and J. M. Soler, Self-consistent order-N density-functional calculations for very large systems, Phys. Rev. B 53(16), R10441 (1996)
CrossRef
ADS
Google scholar
|
[47] |
J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation, J. Phys.: Condens. Matter 14(11), 2745 (2002)
CrossRef
ADS
Google scholar
|
[48] |
E. J. Meijer and M. Sprik, A density-functional study of the intermolecular interactions of benzene, J. Chem. Phys. 105(19), 8684 (1996)
CrossRef
ADS
Google scholar
|
[49] |
S. Goedecker and C. Umrigar, Critical assessment of the self-interaction corrected local density functional method and its algorithmic implementation, Phys. Rev. A 55(3), 1765 (1997)
CrossRef
ADS
Google scholar
|
[50] |
G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. van den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations, Phys. Rev. B 76(7), 073103 (2007)
CrossRef
ADS
Google scholar
|
[51] |
B. G. Wang, J. Wang, and H. Guo, Nonlinear spin polarized transport through a ferromagnetic nonmagnetic ferromagnetic junction, J. Phys. Soc. Jpn. 70(9), 2645 (2001)
CrossRef
ADS
Google scholar
|
[52] |
M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Generalized many-channel conductance formula with application to small rings, Phys. Rev. B 31(10), 6207 (1985)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |