First-principles investigation of quantum transport in GeP3 nanoribbon-based tunneling junctions

Qiang Wang, Jian-Wei Li, Bin Wang, Yi-Hang Nie

PDF(2630 KB)
PDF(2630 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (3) : 138501. DOI: 10.1007/s11467-018-0750-x
RESEARCH ARTICLE
RESEARCH ARTICLE

First-principles investigation of quantum transport in GeP3 nanoribbon-based tunneling junctions

Author information +
History +

Abstract

Two-dimensional (2D) GeP3 has recently been theoretically proposed as a new low-dimensional material [Nano Lett. 17(3), 1833 (2017)]. In this manuscript, we propose a first-principles calculation to investigate the quantum transport properties of several GeP3 nanoribbon-based atomic tunneling junctions. Numerical results indicate that monolayer GeP3 nanoribbons show semiconducting behavior, whereas trilayer GeP3 nanoribbons express metallic behavior owing to the strong interaction between each of the layers. This behavior is in accordance with that proposed in two-dimensional GeP3 layers. The transmission coefficient T(E) of tunneling junctions is sensitive to the connecting formation between the central monolayer GeP3 nanoribbon and the trilayer GeP3 nanoribbon at both ends. The T(E) value of the bottom-connecting tunneling junction is considerably larger than those of the middle-connecting and top-connecting ones. With increases in gate voltage, the conductances increase for the bottom-connecting and middle-connecting tunneling junctions, but decrease for the top-connecting tunneling junctions. In addition, the conductance decreases exponentially with respect to the length of the central monolayer GeP3 nanoribbon for all the tunneling junctions. IV curves show approximately linear behavior for the bottom-connecting and middle-connecting structures, but exhibit negative differential resistance for the top-connecting structures. The physics of each phenomenon is analyzed in detail.

Keywords

quantum transport / GeP3 tunneling junctions / NEGF-DFT

Cite this article

Download citation ▾
Qiang Wang, Jian-Wei Li, Bin Wang, Yi-Hang Nie. First-principles investigation of quantum transport in GeP3 nanoribbon-based tunneling junctions. Front. Phys., 2018, 13(3): 138501 https://doi.org/10.1007/s11467-018-0750-x

References

[1]
Y. Jing, Y. Ma, Y. Li, and T. Heine, GeP3: A small indirect band gap 2D crystal with high carrier mobility and strong interlayer quantum confinement, Nano Lett. 17(3), 1833 (2017)
CrossRef ADS Google scholar
[2]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef ADS Google scholar
[3]
S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)
CrossRef ADS Google scholar
[4]
F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, and V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage, Science 347(6217), 1246501 (2015)
CrossRef ADS Google scholar
[5]
S. D. Sarma and S. Adam, E. H. wang and E. Rossi, Electronic transport in two-dimensional graphene, Rev. Mod. Phys. 83(407), 407 (2011)
CrossRef ADS Google scholar
[6]
A. H. N. Castro, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(109), 109 (2009)
CrossRef ADS Google scholar
[7]
A. Lherbier, X. Blase, Y. M. Niquet, F. Triozon, and S. Roche, Charge transport in chemically doped 2D graphene, Phys. Rev. Lett. 101(3), 036808 (2008)
CrossRef ADS Google scholar
[8]
B. Z. Rameshti and A. G. Moghaddam, Spin-dependent Seebeck effect and spin caloritronics in magnetic graphene, Phys. Rev. B 91(15), 155407 (2015)
CrossRef ADS Google scholar
[9]
Y. Xing, Q. Sun, and J. Wang, Nernst and Seebeck effects in a graphene nanoribbon, Phys. Rev. B 80(23), 235411 (2009)
CrossRef ADS Google scholar
[10]
B. Wang, J. Li, F. Xu, Y. Wei, J. Wang, and H. Guo, Transient dynamics of magnetic Co-graphene systems, Nanoscale 7(22), 10030 (2015)
CrossRef ADS Google scholar
[11]
A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, and Y. Takamura, Experimental evidence for epitaxial silicene on diboride thin films, Phys. Rev. Lett. 108(24), 245501 (2012)
CrossRef ADS Google scholar
[12]
P. Vogt, P. D. Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. L. Lay, Silicene: compelling experimental evidence for Graphene like two-dimensional silicon, Phys. Rev. Lett. 108(15), 155501 (2012)
CrossRef ADS Google scholar
[13]
A. Subedi, L. Zhang, D. J. Singh, and M. H. Du, Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconductivity, Phys. Rev. B 78(13) (2008)
[14]
D. Xiao, G. B. Liu, W. Feng, X. Xu and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett. 108, 196802 (2012)
CrossRef ADS Google scholar
[15]
M. Ramakrishna, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, MoS2 and WS2 analogues of graphene, Angew. Chem. Int. Ed. 49(24), 4059 (2010)
CrossRef ADS Google scholar
[16]
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
CrossRef ADS Google scholar
[17]
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
CrossRef ADS Google scholar
[18]
L. Zhang, L. Wan, Y. Yu, B. Wang, F. Xu, Y. Wei, and Y. Zhao, Modulation of electronic structure of armchair MoS2 nanoribbon, J. Phys. Chem. C 119(38), 22164 (2015)
CrossRef ADS Google scholar
[19]
F. Xia, H. Wang, and Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics, Nat. Commun. 5, 4458 (2008)
[20]
L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)
CrossRef ADS Google scholar
[21]
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)
CrossRef ADS Google scholar
[22]
C. Y. Zhi, Y. Bando, C. C. Tang, H. Kuwahara, and D. Golberg, Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties, Adv. Mater. 21(28), 2889 (2009)
CrossRef ADS Google scholar
[23]
J. H. Warner, M. H. Rümmeli, A. Bachmatiuk, and B. Büchner, Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation, ACS Nano 4(3), 1299 (2010)
CrossRef ADS Google scholar
[24]
A. Nag, K. Raidongia, K. P. S. S. Hembram, R. Datta, U. V. Waghmare, and C. N. R. Rao, Graphene analogues of BN: Novel synthesis and properties, ACS Nano 4(3), 1539 (2010)
CrossRef ADS Google scholar
[25]
P. Miró, M. Audiffred, and T. Heine, An atlas of twodimensional materials, Chem. Soc. Rev. 43(18), 6537 (2014)
CrossRef ADS Google scholar
[26]
C. L. Haynes and R. P. Van Duyne, Nanosphere lithography: A versatile nanofabrication tool for studies of size dependent nanoparticle optics, J. Phys. Chem. B 105(24), 5599 (2001)
CrossRef ADS Google scholar
[27]
J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russel, Photonic band cap guidance in optical fibers, Science 282(5393), 1476 (1998)
CrossRef ADS Google scholar
[28]
A. V. Krasheninnikov, and K. Nordlund, Ion and electron irradiation-induced effects in nanostructured materials, J. Appl. Phys. 107(7), 071301 (2010)
CrossRef ADS Google scholar
[29]
Z. H. Qiao, S. A. Yang, B. Wang, Y. G. Yao, and Q. Niu, Spin-polarized and valley helical edge modes in graphene nanoribbons, Phys. Rev. B 84(3), 035431 (2011)
CrossRef ADS Google scholar
[30]
B. Wang and J. Wang, First-principles investigation of transport properties through longitudinal unzipped carbon nanotubes, Phys. Rev. B 81(4), 045425 (2010)
CrossRef ADS Google scholar
[31]
W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, Optical properties of two interacting gold nanoparticles, Opt. Commun. 220(1–3), 137 (2003)
CrossRef ADS Google scholar
[32]
D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett. 108(19), 196802 (2012)
CrossRef ADS Google scholar
[33]
W. Qi, H. Zhao, Y. Wu, H. Zeng, T. Tao, C. Chen, C. Kuang, S. Zhou, and Y. Huang, Facile synthesis of layer structured GeP3/C with stable chemical bonding for enhanced lithium-ion storage, Sci. Rep. 7, 43582 (2017)
CrossRef ADS Google scholar
[34]
C. Zhang, Y. Jiao, T. He, F. Ma, L. Kou, T. Liao, S. Bottle, and A. Du, Two-dimensional GeP3 as a high capacity electrode material for Li-ion batteries, Phys. Chem. Chem. Phys. 19(38), 25886 (2017)
CrossRef ADS Google scholar
[35]
W. X. Lai, C. Zhang, and Z. S. Ma, Single molecular shuttle junction: Shot noise and decoherence, Front. Phys. 10(1), 108501 (2015)
CrossRef ADS Google scholar
[36]
Z. Y. Ning, J. S. Qiao, W. Ji, and H. Guo, Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions, Front. Phys. 9(6), 780 (2014)
CrossRef ADS Google scholar
[37]
Y. Cai, G. Zhang, and Y. W. Zhang, Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons, J. Am. Chem. Soc. 136(17), 6269 (2014)
CrossRef ADS Google scholar
[38]
Y. Zhang, X. H. Yan, Y. D. Guo, and Y. Xiao, Magnetization distribution and spin transport of graphene/h- BN/graphene nanoribbon-based magnetic tunnel junction, Phys. Lett. A 381(35), 2949 (2017)
CrossRef ADS Google scholar
[39]
J. W. Li, B. Wang, Y. J. Yu, Y. D. Wei, Z. Z. Yu, and Y. Wang, Spin-resolved quantum transport in graphenebased nanojunctions, Front. Phys. 12(4) (2016)
[40]
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[41]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef ADS Google scholar
[42]
J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100(13), 136406 (2008)
CrossRef ADS Google scholar
[43]
H. J. Monkhorst and J. D. Pack, Special points for Brillouin zone integrations, Phys. Rev. B 13(12), 5188 (1976)
CrossRef ADS Google scholar
[44]
J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)
CrossRef ADS Google scholar
[45]
D. Hamann, M. Schlüter, and C. Chiang, Normconserving pseudopotentials, Phys. Rev. Lett. 43(20), 1494 (1979)
CrossRef ADS Google scholar
[46]
P. Ordejón, E. Artacho, and J. M. Soler, Self-consistent order-N density-functional calculations for very large systems, Phys. Rev. B 53(16), R10441 (1996)
CrossRef ADS Google scholar
[47]
J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation, J. Phys.: Condens. Matter 14(11), 2745 (2002)
CrossRef ADS Google scholar
[48]
E. J. Meijer and M. Sprik, A density-functional study of the intermolecular interactions of benzene, J. Chem. Phys. 105(19), 8684 (1996)
CrossRef ADS Google scholar
[49]
S. Goedecker and C. Umrigar, Critical assessment of the self-interaction corrected local density functional method and its algorithmic implementation, Phys. Rev. A 55(3), 1765 (1997)
CrossRef ADS Google scholar
[50]
G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. van den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations, Phys. Rev. B 76(7), 073103 (2007)
CrossRef ADS Google scholar
[51]
B. G. Wang, J. Wang, and H. Guo, Nonlinear spin polarized transport through a ferromagnetic nonmagnetic ferromagnetic junction, J. Phys. Soc. Jpn. 70(9), 2645 (2001)
CrossRef ADS Google scholar
[52]
M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Generalized many-channel conductance formula with application to small rings, Phys. Rev. B 31(10), 6207 (1985)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2630 KB)

Accesses

Citations

Detail

Sections
Recommended

/