Periodic synchronization in a system of coupled phase oscillators with attractive and repulsive interactions

Di Yuan , Jun-Long Tian , Fang Lin , Dong-Wei Ma , Jing Zhang , Hai-Tao Cui , Yi Xiao

Front. Phys. ›› 2018, Vol. 13 ›› Issue (3) : 130504

PDF (1184KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (3) : 130504 DOI: 10.1007/s11467-018-0748-4
RESEARCH ARTICLE

Periodic synchronization in a system of coupled phase oscillators with attractive and repulsive interactions

Author information +
History +
PDF (1184KB)

Abstract

In this study we investigate the collective behavior of the generalized Kuramoto model with an external pinning force in which oscillators with positive and negative coupling strengths are conformists and contrarians, respectively. We focus on a situation in which the natural frequencies of the oscillators follow a uniform probability density. By numerically simulating the model, it is shown that the model supports multistable synchronized states such as a traveling wave state, π state and periodic synchronous state: an oscillating π state. The oscillating π state may be characterized by the phase distribution oscillating in a confined region and the phase difference between conformists and contrarians oscillating around π periodically. In addition, we present the parameter space of the oscillating π state and traveling wave state of the model.

Keywords

generalized Kuramoto model / pinning force / conformists / contrarians / oscillating π state

Cite this article

Download citation ▾
Di Yuan, Jun-Long Tian, Fang Lin, Dong-Wei Ma, Jing Zhang, Hai-Tao Cui, Yi Xiao. Periodic synchronization in a system of coupled phase oscillators with attractive and repulsive interactions. Front. Phys., 2018, 13(3): 130504 DOI:10.1007/s11467-018-0748-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Kuramoto, International symposium on mathematical problems in theoretical physics, in: H. Araki (Editor), Lecture Notes in Physics 39 (420–422), New York: Springer 1975

[2]

S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Critical phenomena in complex networks, Rev. Mod. Phys. 80(4), 1275 (2008)

[3]

C. von Cube, S. Slama, D. Kruse, C. Zimmermann, P. W. Courteille, G. R. M. Robb, N. Piovella, and R. Bonifacio, Self-synchronization and dissipation-induced threshold in collective atomic recoil lasing, Phys. Rev. Lett. 93(8), 083601 (2004)

[4]

J. Javaloyes, M. Perrin, and A. Politi, Collective atomic recoil laser as a synchronization transition, Phys. Rev. E 78(1), 011108 (2008)

[5]

M. Wickramasinghe and I. Z. Kiss, Phase synchronization of three locally coupled chaotic electrochemical oscillators: Enhanced phase diffusion and identification of indirect coupling, Phys. Rev. E 83(1), 016210 (2011)

[6]

I. Z. Kiss, W. Wang, and J. L. Hudson, Populations of coupled electrochemical oscillators, Chaos 12(1), 252 (2002)

[7]

J. W. Swift, S. H. Strogatz, and K. Wiesenfeld, Averaging of globally coupled oscillators, Physica D 55(3–4), 239 (1992)

[8]

K. Wiesenfeld, P. Colet, and S. H. Strogatz, Synchronization transitions in a disordered Josephson series array, Phys. Rev. Lett. 76(3), 404 (1996)

[9]

K. Wiesenfeld, P. Colet, and S. H. Strogatz, Frequency locking in Josephson arrays: Connection with the Kuramoto model, Phys. Rev. E 57(2), 1563 (1998)

[10]

G. Grüner, The dynamics of charge-density waves, Rev. Mod. Phys. 60(4), 1129 (1988)

[11]

C. M. Marcus, S. H. Strogatz, and R. M. Westervelt, Delayed switching in a phase-slip model of charge-densitywave transport, Phys. Rev. B 40(8), 5588 (1989)

[12]

J. Buck and E. Buck, Synchronous fireflies, Sci. Am. 234(5), 74 (1976)

[13]

C. S. Peskin, Mathematical Aspects of Heart Physiology, Courant Institute of Mathematical Science Publication, 268–278, New York: Springer, 1975

[14]

I. Z. Kiss, et al., Emerging coherence in a population of chemical oscillators, Science 296(5573), 1676 (2002)

[15]

G. Filatrella, A. H. Nielsen, and N. F. Pedersen, Analysis of a power grid using a Kuramoto-like model, Eur. Phys. J. B 61(4), 485 (2008)

[16]

M. Rohden, A. Sorge, M. Timme, and D. Witthaut, Selforganized synchronization in decentralized power grids, Phys. Rev. Lett. 109(6), 064101 (2012)

[17]

F. Dorfler, M. Chertkov, and F. Bullo, Synchronization in complex oscillator networks and smart grids, Proc. Natl. Acad. Sci. USA 110(6), 2005 (2013)

[18]

Z. Néda, E. Ravasz, T. Vicsek, Y. Brechet, and A. L. Barabási, Physics of the rhythmic applause, Phys. Rev. E 61(6), 6987 (2000)

[19]

J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77(1), 137 (2005)

[20]

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol. 16(1), 15 (1967)

[21]

H. Daido, Population dynamics of randomly interacting self-oscillators, Prog. Theor. Phys. 77(3), 622 (1987)

[22]

C. Börgers, S. Epstein, and N. J. Kopell, Background gamma rhythmicity and attention in cortical local circuits: A computational study, Proc. Natl. Acad. Sci. USA 102(19), 7002 (2005)

[23]

C. Börgers and N. Kopell, Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity, Neural Comput. 15(3), 509 (2003)

[24]

H. Hong and S. H. Strogatz, Kuramoto model of coupled oscillators with positive and negative coupling parameters: An example of conformist and contrarian oscillators, Phys. Rev. Lett. 106(5), 054102 (2011)

[25]

H. Hong and S. H. Strogatz, Conformists and contrarians in a Kuramoto model with identical natural frequencies, Phys. Rev. E 84(4), 046202 (2011)

[26]

C. Freitas, E. Macau, and A. Pikovsky, Partial synchronization in networks of non-linearly coupled oscillators: The Deserter Hubs Model, Chaos 25(4), 043119 (2015)

[27]

H. Sakaguchi, Cooperative phenomena in coupled oscillator systems under external fields, Prog. Theor. Phys. 79(1), 39 (1988)

[28]

H. Kori and A. S. Mikhailov, Strong effects of network architecture in the entrainment of coupled oscillator systems, Phys. Rev. E 74(6), 066115 (2006)

[29]

T. M. Jr Antonsen, R. T. Faghih, M. Girvan, E. Ott, and J. Platig, External periodic driving of large systems of globally coupled phase oscillators, Chaos 18(3), 037112 (2008)

[30]

E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos 18(3), 037113 (2008)

[31]

S. H. Park and S. Kim, Noise-induced phase transitions in globally coupled active rotators, Phys. Rev. E 53(4), 3425 (1996)

[32]

S. Shinomoto and Y. Kuramoto, Phase transitions in active rotator systems, Prog. Theor. Phys. 75(5), 1105 (1986)

[33]

H. Hong, Periodic synchronization and chimera in conformist and contrarian oscillators, Phys. Rev. E 89(6), 062924 (2014)

[34]

D. Hansel, G. Mato, and C. Meunier, Clustering and slow switching in globally coupled phase oscillators, Phys. Rev. E 48(5), 3470 (1993)

[35]

O. Burylko, Y. Kazanovich, and R. Borisyuk, Bifurcation study of phase oscillator systems with attractive and repulsive interaction, Phys. Rev. E 90(2), 022911 (2014)

[36]

C. Bick, M. Timme, D. Paulikat, D. Rathlev, and P. Ashwin, Chaos in symmetric phase oscillator networks, Phys. Rev. Lett. 107(24), 244101 (2011)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1184KB)

1047

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/