Periodic synchronization in a system of coupled phase oscillators with attractive and repulsive interactions
Di Yuan, Jun-Long Tian, Fang Lin, Dong-Wei Ma, Jing Zhang, Hai-Tao Cui, Yi Xiao
Periodic synchronization in a system of coupled phase oscillators with attractive and repulsive interactions
In this study we investigate the collective behavior of the generalized Kuramoto model with an external pinning force in which oscillators with positive and negative coupling strengths are conformists and contrarians, respectively. We focus on a situation in which the natural frequencies of the oscillators follow a uniform probability density. By numerically simulating the model, it is shown that the model supports multistable synchronized states such as a traveling wave state, π state and periodic synchronous state: an oscillating π state. The oscillating π state may be characterized by the phase distribution oscillating in a confined region and the phase difference between conformists and contrarians oscillating around π periodically. In addition, we present the parameter space of the oscillating π state and traveling wave state of the model.
generalized Kuramoto model / pinning force / conformists / contrarians / oscillating π state
[1] |
Y. Kuramoto, International symposium on mathematical problems in theoretical physics, in: H. Araki (Editor), Lecture Notes in Physics 39 (420–422), New York: Springer 1975
|
[2] |
S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Critical phenomena in complex networks, Rev. Mod. Phys. 80(4), 1275 (2008)
CrossRef
ADS
Google scholar
|
[3] |
C. von Cube, S. Slama, D. Kruse, C. Zimmermann, P. W. Courteille, G. R. M. Robb, N. Piovella, and R. Bonifacio, Self-synchronization and dissipation-induced threshold in collective atomic recoil lasing, Phys. Rev. Lett. 93(8), 083601 (2004)
CrossRef
ADS
Google scholar
|
[4] |
J. Javaloyes, M. Perrin, and A. Politi, Collective atomic recoil laser as a synchronization transition, Phys. Rev. E 78(1), 011108 (2008)
CrossRef
ADS
Google scholar
|
[5] |
M. Wickramasinghe and I. Z. Kiss, Phase synchronization of three locally coupled chaotic electrochemical oscillators: Enhanced phase diffusion and identification of indirect coupling, Phys. Rev. E 83(1), 016210 (2011)
CrossRef
ADS
Google scholar
|
[6] |
I. Z. Kiss, W. Wang, and J. L. Hudson, Populations of coupled electrochemical oscillators, Chaos 12(1), 252 (2002)
CrossRef
ADS
Google scholar
|
[7] |
J. W. Swift, S. H. Strogatz, and K. Wiesenfeld, Averaging of globally coupled oscillators, Physica D 55(3–4), 239 (1992)
CrossRef
ADS
Google scholar
|
[8] |
K. Wiesenfeld, P. Colet, and S. H. Strogatz, Synchronization transitions in a disordered Josephson series array, Phys. Rev. Lett. 76(3), 404 (1996)
CrossRef
ADS
Google scholar
|
[9] |
K. Wiesenfeld, P. Colet, and S. H. Strogatz, Frequency locking in Josephson arrays: Connection with the Kuramoto model, Phys. Rev. E 57(2), 1563 (1998)
CrossRef
ADS
Google scholar
|
[10] |
G. Grüner, The dynamics of charge-density waves, Rev. Mod. Phys. 60(4), 1129 (1988)
CrossRef
ADS
Google scholar
|
[11] |
C. M. Marcus, S. H. Strogatz, and R. M. Westervelt, Delayed switching in a phase-slip model of charge-densitywave transport, Phys. Rev. B 40(8), 5588 (1989)
CrossRef
ADS
Google scholar
|
[12] |
J. Buck and E. Buck, Synchronous fireflies, Sci. Am. 234(5), 74 (1976)
CrossRef
ADS
Google scholar
|
[13] |
C. S. Peskin, Mathematical Aspects of Heart Physiology, Courant Institute of Mathematical Science Publication, 268–278, New York: Springer, 1975
|
[14] |
I. Z. Kiss, et al., Emerging coherence in a population of chemical oscillators, Science 296(5573), 1676 (2002)
CrossRef
ADS
Google scholar
|
[15] |
G. Filatrella, A. H. Nielsen, and N. F. Pedersen, Analysis of a power grid using a Kuramoto-like model, Eur. Phys. J. B 61(4), 485 (2008)
CrossRef
ADS
Google scholar
|
[16] |
M. Rohden, A. Sorge, M. Timme, and D. Witthaut, Selforganized synchronization in decentralized power grids, Phys. Rev. Lett. 109(6), 064101 (2012)
CrossRef
ADS
Google scholar
|
[17] |
F. Dorfler, M. Chertkov, and F. Bullo, Synchronization in complex oscillator networks and smart grids, Proc. Natl. Acad. Sci. USA 110(6), 2005 (2013)
CrossRef
ADS
Google scholar
|
[18] |
Z. Néda, E. Ravasz, T. Vicsek, Y. Brechet, and A. L. Barabási, Physics of the rhythmic applause, Phys. Rev. E 61(6), 6987 (2000)
CrossRef
ADS
Google scholar
|
[19] |
J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77(1), 137 (2005)
CrossRef
ADS
Google scholar
|
[20] |
A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol. 16(1), 15 (1967)
CrossRef
ADS
Google scholar
|
[21] |
H. Daido, Population dynamics of randomly interacting self-oscillators, Prog. Theor. Phys. 77(3), 622 (1987)
CrossRef
ADS
Google scholar
|
[22] |
C. Börgers, S. Epstein, and N. J. Kopell, Background gamma rhythmicity and attention in cortical local circuits: A computational study, Proc. Natl. Acad. Sci. USA 102(19), 7002 (2005)
CrossRef
ADS
Google scholar
|
[23] |
C. Börgers and N. Kopell, Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity, Neural Comput. 15(3), 509 (2003)
CrossRef
ADS
Google scholar
|
[24] |
H. Hong and S. H. Strogatz, Kuramoto model of coupled oscillators with positive and negative coupling parameters: An example of conformist and contrarian oscillators, Phys. Rev. Lett. 106(5), 054102 (2011)
CrossRef
ADS
Google scholar
|
[25] |
H. Hong and S. H. Strogatz, Conformists and contrarians in a Kuramoto model with identical natural frequencies, Phys. Rev. E 84(4), 046202 (2011)
CrossRef
ADS
Google scholar
|
[26] |
C. Freitas, E. Macau, and A. Pikovsky, Partial synchronization in networks of non-linearly coupled oscillators: The Deserter Hubs Model, Chaos 25(4), 043119 (2015)
CrossRef
ADS
Google scholar
|
[27] |
H. Sakaguchi, Cooperative phenomena in coupled oscillator systems under external fields, Prog. Theor. Phys. 79(1), 39 (1988)
CrossRef
ADS
Google scholar
|
[28] |
H. Kori and A. S. Mikhailov, Strong effects of network architecture in the entrainment of coupled oscillator systems, Phys. Rev. E 74(6), 066115 (2006)
CrossRef
ADS
Google scholar
|
[29] |
T. M. Jr Antonsen, R. T. Faghih, M. Girvan, E. Ott, and J. Platig, External periodic driving of large systems of globally coupled phase oscillators, Chaos 18(3), 037112 (2008)
CrossRef
ADS
Google scholar
|
[30] |
E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos 18(3), 037113 (2008)
CrossRef
ADS
Google scholar
|
[31] |
S. H. Park and S. Kim, Noise-induced phase transitions in globally coupled active rotators, Phys. Rev. E 53(4), 3425 (1996)
CrossRef
ADS
Google scholar
|
[32] |
S. Shinomoto and Y. Kuramoto, Phase transitions in active rotator systems, Prog. Theor. Phys. 75(5), 1105 (1986)
CrossRef
ADS
Google scholar
|
[33] |
H. Hong, Periodic synchronization and chimera in conformist and contrarian oscillators, Phys. Rev. E 89(6), 062924 (2014)
CrossRef
ADS
Google scholar
|
[34] |
D. Hansel, G. Mato, and C. Meunier, Clustering and slow switching in globally coupled phase oscillators, Phys. Rev. E 48(5), 3470 (1993)
CrossRef
ADS
Google scholar
|
[35] |
O. Burylko, Y. Kazanovich, and R. Borisyuk, Bifurcation study of phase oscillator systems with attractive and repulsive interaction, Phys. Rev. E 90(2), 022911 (2014)
CrossRef
ADS
Google scholar
|
[36] |
C. Bick, M. Timme, D. Paulikat, D. Rathlev, and P. Ashwin, Chaos in symmetric phase oscillator networks, Phys. Rev. Lett. 107(24), 244101 (2011)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |