Fano resonances in heterogeneous dimers of silicon and gold nanospheres

Qian Zhao , Zhong-Jian Yang , Jun He

Front. Phys. ›› 2018, Vol. 13 ›› Issue (3) : 137801

PDF (4856KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (3) : 137801 DOI: 10.1007/s11467-018-0746-6
RESEARCH ARTICLE

Fano resonances in heterogeneous dimers of silicon and gold nanospheres

Author information +
History +
PDF (4856KB)

Abstract

We theoretically investigate the optical properties of dimers consisting of a gold nanosphere and a silicon nanosphere. The absorption spectrum of the gold sphere in the dimer can be significantly altered and exhibits a pronounced Fano profile. Analytical Mie theory and numerical simulations show that the Fano profile is induced by constructive and destructive interference between the incident electric field and the electric field of the magnetic dipole mode of the silicon sphere in a narrow wavelength range. The effects of the silicon sphere size, distance between the two spheres, and excitation configuration on the optical responses of the dimers are studied. Our study reveals the coherent feature of the electric fields of magnetic dipole modes in dielectric nanostructures and the strong interactions of the coherent fields with other nanophotonic structures.

Keywords

silicon nanosphere / gold nanosphere / magnetic dipole resonance / Fano resonance / Mie theory

Cite this article

Download citation ▾
Qian Zhao, Zhong-Jian Yang, Jun He. Fano resonances in heterogeneous dimers of silicon and gold nanospheres. Front. Phys., 2018, 13(3): 137801 DOI:10.1007/s11467-018-0746-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, Optically resonant dielectric nanostructures, Science 354(6314), aag2472 (2016)

[2]

Z. J. Yang, R. Jiang, X. Zhuo, Y. M. Xie, J. Wang, and H. Q. Lin, Dielectric nanoresonators for light manipulation, Phys. Rep. 701, 1 (2017)

[3]

I. Staude and J. Schilling, Metamaterial-inspired silicon nanophotonics, Nat. Photonics 11(5), 274 (2017)

[4]

M. Caldarola, P. Albella, E. Cortes, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion, Nat. Commun. 6, 7915 (2015)

[5]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, All-dielectric optical nanoantennas, Opt. Express 20(18), 20599 (2012)

[6]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, Dielectric gradient metasurface optical elements, Science 345(6194), 298 (2014)

[7]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging, Science 352(6290), 1190 (2016)

[8]

S. Jahani and Z. Jacob, All-dielectric metamaterials, Nat. Nanotechnol. 11(1), 23 (2016)

[9]

M. L. Brongersma, Y. Cui, and S. Fan, Light management for photovoltaics using high-index nanostructures, Nat. Mater. 13(5), 451 (2014)

[10]

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, Resonant laser printing of structural colors on high-index dielectric metasurfaces, Sci. Adv. 3(5), e1602487 (2017)

[11]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, Magnetic light, Sci. Rep. 2(1), 492 (2012)

[12]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region, Nano Lett. 12(7), 3749 (2012)

[13]

T. G. Habteyes, I. Staude, K. E. Chong, J. Dominguez, M. Decker, A. Miroshnichenko, Y. Kivshar, and I. Brener, Near-field mapping of optical modes on alldielectric silicon nanodisks, ACS Photon. 1, 794 (2014)

[14]

W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, Invisible nanowires with interfering electric and toroidal dipoles, Opt. Lett. 40(10), 2293 (2015)

[15]

H. S. Ee, J. H. Kang, M. L. Brongersma, and M. K. Seo, Shape-dependent light scattering properties of subwavelength silicon nanoblocks, Nano Lett. 15(3), 1759 (2015)

[16]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Dominguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, Magnetic and electric hotspots with silicon nanodimers, Nano Lett. 15(3), 2137 (2015)

[17]

Z. J. Yang, Q. Zhao, and J. He, Boosting magnetic field enhancement with radiative couplings of magnetic modes in dielectric nanostructures, Opt. Express 25(14), 15927 (2017)

[18]

J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, Directional Fano resonance in a silicon nanosphere dimer, ACS Nano 9(3), 2968 (2015)

[19]

T. Shibanuma, P. Albella, and S. A. Maier, Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas, Nanoscale 8(29), 14184 (2016)

[20]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances, Nat. Commun. 5, 3892 (2014)

[21]

B. Hopkins, D. S. Filonov, A. E. Miroshnichenko, F. Monticone, A. Alù, and Y. S. Kivshar, Interplay of magnetic responses in all-dielectric oligomers to realize magnetic Fano resonances, ACS Photon. 2, 724 (2015)

[22]

Z. J. Yang, Fano interference of electromagnetic modes in subwavelength dielectric nanocrosses, J. Phys. Chem. C 120(38), 21843 (2016)

[23]

D. J. Cai, Y. H. Huang, W. J. Wang, W. B. Ji, J. D. Chen, Z. H. Chen, and S. D. Liu, Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry, J. Phys. Chem. C 119(8), 4252 (2015)

[24]

D. R. Abujetas, M. A. G. Mandujano, E. R. Méndez, and J. A. Sánchez-Gil, High-contrast Fano resonances in single semiconductor nanorods, ACS Photon. 4, 1814 (2017)

[25]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, Broadband unidirectional scattering by magneto-electric core–shell nanoparticles, ACS Nano 6(6), 5489 (2012)

[26]

H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, Janus magneto–electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement, ACS Nano 9(1), 436 (2015)

[27]

R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, Multipolar coupling in hybrid metal-dielectric metasurfaces, ACS Photon. 3, 349 (2016)

[28]

H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, and B. Yang, Fano resonance in (gold core)-(dielectric shell) nanostructures without symmetry breaking, Small 8(10), 1503 (2012)

[29]

Z. J. Yang, Q. Q. Wang, and H. Q. Lin, Tunable two types of Fano resonances in metal–dielectric core–shell nanoparticle clusters, Appl. Phys. Lett. 103(11), 111115 (2013)

[30]

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, Fano resonances in photonics, Nat. Photonics 11(9), 543 (2017)

[31]

H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, Resonance coupling in silicon nanosphere—J-aggregate heterostructures, Nano Lett. 16(11), 6886 (2016)

[32]

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals, Nano Lett. 17(8), 4689 (2017)

[33]

E. D. Palik, Handbook of Optical Constants of Solids, Vol. 3, Academic Press, 1998

[34]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, 2008

[35]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, Strong magnetic response of submicron Silicon particles in the infrared, Opt. Express 19(6), 4815 (2011)

[36]

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P. F. Brevet, Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles, Phys. Rev. Lett. 101(19), 197401 (2008)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (4856KB)

1197

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/