Fano resonances in heterogeneous dimers of silicon and gold nanospheres

Qian Zhao, Zhong-Jian Yang, Jun He

PDF(4856 KB)
PDF(4856 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (3) : 137801. DOI: 10.1007/s11467-018-0746-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Fano resonances in heterogeneous dimers of silicon and gold nanospheres

Author information +
History +

Abstract

We theoretically investigate the optical properties of dimers consisting of a gold nanosphere and a silicon nanosphere. The absorption spectrum of the gold sphere in the dimer can be significantly altered and exhibits a pronounced Fano profile. Analytical Mie theory and numerical simulations show that the Fano profile is induced by constructive and destructive interference between the incident electric field and the electric field of the magnetic dipole mode of the silicon sphere in a narrow wavelength range. The effects of the silicon sphere size, distance between the two spheres, and excitation configuration on the optical responses of the dimers are studied. Our study reveals the coherent feature of the electric fields of magnetic dipole modes in dielectric nanostructures and the strong interactions of the coherent fields with other nanophotonic structures.

Keywords

silicon nanosphere / gold nanosphere / magnetic dipole resonance / Fano resonance / Mie theory

Cite this article

Download citation ▾
Qian Zhao, Zhong-Jian Yang, Jun He. Fano resonances in heterogeneous dimers of silicon and gold nanospheres. Front. Phys., 2018, 13(3): 137801 https://doi.org/10.1007/s11467-018-0746-6

References

[1]
A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, Optically resonant dielectric nanostructures, Science 354(6314), aag2472 (2016)
CrossRef ADS Google scholar
[2]
Z. J. Yang, R. Jiang, X. Zhuo, Y. M. Xie, J. Wang, and H. Q. Lin, Dielectric nanoresonators for light manipulation, Phys. Rep. 701, 1 (2017)
CrossRef ADS Google scholar
[3]
I. Staude and J. Schilling, Metamaterial-inspired silicon nanophotonics, Nat. Photonics 11(5), 274 (2017)
CrossRef ADS Google scholar
[4]
M. Caldarola, P. Albella, E. Cortes, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion, Nat. Commun. 6, 7915 (2015)
CrossRef ADS Google scholar
[5]
A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, All-dielectric optical nanoantennas, Opt. Express 20(18), 20599 (2012)
CrossRef ADS Google scholar
[6]
D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, Dielectric gradient metasurface optical elements, Science 345(6194), 298 (2014)
CrossRef ADS Google scholar
[7]
M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging, Science 352(6290), 1190 (2016)
CrossRef ADS Google scholar
[8]
S. Jahani and Z. Jacob, All-dielectric metamaterials, Nat. Nanotechnol. 11(1), 23 (2016)
CrossRef ADS Google scholar
[9]
M. L. Brongersma, Y. Cui, and S. Fan, Light management for photovoltaics using high-index nanostructures, Nat. Mater. 13(5), 451 (2014)
CrossRef ADS Google scholar
[10]
X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, Resonant laser printing of structural colors on high-index dielectric metasurfaces, Sci. Adv. 3(5), e1602487 (2017)
CrossRef ADS Google scholar
[11]
A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, Magnetic light, Sci. Rep. 2(1), 492 (2012)
CrossRef ADS Google scholar
[12]
A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region, Nano Lett. 12(7), 3749 (2012)
CrossRef ADS Google scholar
[13]
T. G. Habteyes, I. Staude, K. E. Chong, J. Dominguez, M. Decker, A. Miroshnichenko, Y. Kivshar, and I. Brener, Near-field mapping of optical modes on alldielectric silicon nanodisks, ACS Photon. 1, 794 (2014)
CrossRef ADS Google scholar
[14]
W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, Invisible nanowires with interfering electric and toroidal dipoles, Opt. Lett. 40(10), 2293 (2015)
CrossRef ADS Google scholar
[15]
H. S. Ee, J. H. Kang, M. L. Brongersma, and M. K. Seo, Shape-dependent light scattering properties of subwavelength silicon nanoblocks, Nano Lett. 15(3), 1759 (2015)
CrossRef ADS Google scholar
[16]
R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Dominguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, Magnetic and electric hotspots with silicon nanodimers, Nano Lett. 15(3), 2137 (2015)
CrossRef ADS Google scholar
[17]
Z. J. Yang, Q. Zhao, and J. He, Boosting magnetic field enhancement with radiative couplings of magnetic modes in dielectric nanostructures, Opt. Express 25(14), 15927 (2017)
CrossRef ADS Google scholar
[18]
J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, Directional Fano resonance in a silicon nanosphere dimer, ACS Nano 9(3), 2968 (2015)
CrossRef ADS Google scholar
[19]
T. Shibanuma, P. Albella, and S. A. Maier, Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas, Nanoscale 8(29), 14184 (2016)
CrossRef ADS Google scholar
[20]
C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances, Nat. Commun. 5, 3892 (2014)
CrossRef ADS Google scholar
[21]
B. Hopkins, D. S. Filonov, A. E. Miroshnichenko, F. Monticone, A. Alù, and Y. S. Kivshar, Interplay of magnetic responses in all-dielectric oligomers to realize magnetic Fano resonances, ACS Photon. 2, 724 (2015)
CrossRef ADS Google scholar
[22]
Z. J. Yang, Fano interference of electromagnetic modes in subwavelength dielectric nanocrosses, J. Phys. Chem. C 120(38), 21843 (2016)
CrossRef ADS Google scholar
[23]
D. J. Cai, Y. H. Huang, W. J. Wang, W. B. Ji, J. D. Chen, Z. H. Chen, and S. D. Liu, Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry, J. Phys. Chem. C 119(8), 4252 (2015)
CrossRef ADS Google scholar
[24]
D. R. Abujetas, M. A. G. Mandujano, E. R. Méndez, and J. A. Sánchez-Gil, High-contrast Fano resonances in single semiconductor nanorods, ACS Photon. 4, 1814 (2017)
CrossRef ADS Google scholar
[25]
W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, Broadband unidirectional scattering by magneto-electric core–shell nanoparticles, ACS Nano 6(6), 5489 (2012)
CrossRef ADS Google scholar
[26]
H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, Janus magneto–electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement, ACS Nano 9(1), 436 (2015)
CrossRef ADS Google scholar
[27]
R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, Multipolar coupling in hybrid metal-dielectric metasurfaces, ACS Photon. 3, 349 (2016)
CrossRef ADS Google scholar
[28]
H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, and B. Yang, Fano resonance in (gold core)-(dielectric shell) nanostructures without symmetry breaking, Small 8(10), 1503 (2012)
CrossRef ADS Google scholar
[29]
Z. J. Yang, Q. Q. Wang, and H. Q. Lin, Tunable two types of Fano resonances in metal–dielectric core–shell nanoparticle clusters, Appl. Phys. Lett. 103(11), 111115 (2013)
CrossRef ADS Google scholar
[30]
M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, Fano resonances in photonics, Nat. Photonics 11(9), 543 (2017)
CrossRef ADS Google scholar
[31]
H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, Resonance coupling in silicon nanosphere—J-aggregate heterostructures, Nano Lett. 16(11), 6886 (2016)
CrossRef ADS Google scholar
[32]
J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals, Nano Lett. 17(8), 4689 (2017)
CrossRef ADS Google scholar
[33]
E. D. Palik, Handbook of Optical Constants of Solids, Vol. 3, Academic Press, 1998
[34]
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, 2008
[35]
A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, Strong magnetic response of submicron Silicon particles in the infrared, Opt. Express 19(6), 4815 (2011)
CrossRef ADS Google scholar
[36]
G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P. F. Brevet, Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles, Phys. Rev. Lett. 101(19), 197401 (2008)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(4856 KB)

Accesses

Citations

Detail

Sections
Recommended

/