Fano resonances in heterogeneous dimers of silicon and gold nanospheres
Qian Zhao, Zhong-Jian Yang, Jun He
Fano resonances in heterogeneous dimers of silicon and gold nanospheres
We theoretically investigate the optical properties of dimers consisting of a gold nanosphere and a silicon nanosphere. The absorption spectrum of the gold sphere in the dimer can be significantly altered and exhibits a pronounced Fano profile. Analytical Mie theory and numerical simulations show that the Fano profile is induced by constructive and destructive interference between the incident electric field and the electric field of the magnetic dipole mode of the silicon sphere in a narrow wavelength range. The effects of the silicon sphere size, distance between the two spheres, and excitation configuration on the optical responses of the dimers are studied. Our study reveals the coherent feature of the electric fields of magnetic dipole modes in dielectric nanostructures and the strong interactions of the coherent fields with other nanophotonic structures.
silicon nanosphere / gold nanosphere / magnetic dipole resonance / Fano resonance / Mie theory
[1] |
A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, Optically resonant dielectric nanostructures, Science 354(6314), aag2472 (2016)
CrossRef
ADS
Google scholar
|
[2] |
Z. J. Yang, R. Jiang, X. Zhuo, Y. M. Xie, J. Wang, and H. Q. Lin, Dielectric nanoresonators for light manipulation, Phys. Rep. 701, 1 (2017)
CrossRef
ADS
Google scholar
|
[3] |
I. Staude and J. Schilling, Metamaterial-inspired silicon nanophotonics, Nat. Photonics 11(5), 274 (2017)
CrossRef
ADS
Google scholar
|
[4] |
M. Caldarola, P. Albella, E. Cortes, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion, Nat. Commun. 6, 7915 (2015)
CrossRef
ADS
Google scholar
|
[5] |
A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, All-dielectric optical nanoantennas, Opt. Express 20(18), 20599 (2012)
CrossRef
ADS
Google scholar
|
[6] |
D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, Dielectric gradient metasurface optical elements, Science 345(6194), 298 (2014)
CrossRef
ADS
Google scholar
|
[7] |
M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging, Science 352(6290), 1190 (2016)
CrossRef
ADS
Google scholar
|
[8] |
S. Jahani and Z. Jacob, All-dielectric metamaterials, Nat. Nanotechnol. 11(1), 23 (2016)
CrossRef
ADS
Google scholar
|
[9] |
M. L. Brongersma, Y. Cui, and S. Fan, Light management for photovoltaics using high-index nanostructures, Nat. Mater. 13(5), 451 (2014)
CrossRef
ADS
Google scholar
|
[10] |
X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, Resonant laser printing of structural colors on high-index dielectric metasurfaces, Sci. Adv. 3(5), e1602487 (2017)
CrossRef
ADS
Google scholar
|
[11] |
A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, Magnetic light, Sci. Rep. 2(1), 492 (2012)
CrossRef
ADS
Google scholar
|
[12] |
A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region, Nano Lett. 12(7), 3749 (2012)
CrossRef
ADS
Google scholar
|
[13] |
T. G. Habteyes, I. Staude, K. E. Chong, J. Dominguez, M. Decker, A. Miroshnichenko, Y. Kivshar, and I. Brener, Near-field mapping of optical modes on alldielectric silicon nanodisks, ACS Photon. 1, 794 (2014)
CrossRef
ADS
Google scholar
|
[14] |
W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, Invisible nanowires with interfering electric and toroidal dipoles, Opt. Lett. 40(10), 2293 (2015)
CrossRef
ADS
Google scholar
|
[15] |
H. S. Ee, J. H. Kang, M. L. Brongersma, and M. K. Seo, Shape-dependent light scattering properties of subwavelength silicon nanoblocks, Nano Lett. 15(3), 1759 (2015)
CrossRef
ADS
Google scholar
|
[16] |
R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Dominguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, Magnetic and electric hotspots with silicon nanodimers, Nano Lett. 15(3), 2137 (2015)
CrossRef
ADS
Google scholar
|
[17] |
Z. J. Yang, Q. Zhao, and J. He, Boosting magnetic field enhancement with radiative couplings of magnetic modes in dielectric nanostructures, Opt. Express 25(14), 15927 (2017)
CrossRef
ADS
Google scholar
|
[18] |
J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, and G. Yang, Directional Fano resonance in a silicon nanosphere dimer, ACS Nano 9(3), 2968 (2015)
CrossRef
ADS
Google scholar
|
[19] |
T. Shibanuma, P. Albella, and S. A. Maier, Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas, Nanoscale 8(29), 14184 (2016)
CrossRef
ADS
Google scholar
|
[20] |
C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances, Nat. Commun. 5, 3892 (2014)
CrossRef
ADS
Google scholar
|
[21] |
B. Hopkins, D. S. Filonov, A. E. Miroshnichenko, F. Monticone, A. Alù, and Y. S. Kivshar, Interplay of magnetic responses in all-dielectric oligomers to realize magnetic Fano resonances, ACS Photon. 2, 724 (2015)
CrossRef
ADS
Google scholar
|
[22] |
Z. J. Yang, Fano interference of electromagnetic modes in subwavelength dielectric nanocrosses, J. Phys. Chem. C 120(38), 21843 (2016)
CrossRef
ADS
Google scholar
|
[23] |
D. J. Cai, Y. H. Huang, W. J. Wang, W. B. Ji, J. D. Chen, Z. H. Chen, and S. D. Liu, Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry, J. Phys. Chem. C 119(8), 4252 (2015)
CrossRef
ADS
Google scholar
|
[24] |
D. R. Abujetas, M. A. G. Mandujano, E. R. Méndez, and J. A. Sánchez-Gil, High-contrast Fano resonances in single semiconductor nanorods, ACS Photon. 4, 1814 (2017)
CrossRef
ADS
Google scholar
|
[25] |
W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, Broadband unidirectional scattering by magneto-electric core–shell nanoparticles, ACS Nano 6(6), 5489 (2012)
CrossRef
ADS
Google scholar
|
[26] |
H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, and H. Chen, Janus magneto–electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement, ACS Nano 9(1), 436 (2015)
CrossRef
ADS
Google scholar
|
[27] |
R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, and Y. S. Kivshar, Multipolar coupling in hybrid metal-dielectric metasurfaces, ACS Photon. 3, 349 (2016)
CrossRef
ADS
Google scholar
|
[28] |
H. Chen, L. Shao, Y. C. Man, C. Zhao, J. Wang, and B. Yang, Fano resonance in (gold core)-(dielectric shell) nanostructures without symmetry breaking, Small 8(10), 1503 (2012)
CrossRef
ADS
Google scholar
|
[29] |
Z. J. Yang, Q. Q. Wang, and H. Q. Lin, Tunable two types of Fano resonances in metal–dielectric core–shell nanoparticle clusters, Appl. Phys. Lett. 103(11), 111115 (2013)
CrossRef
ADS
Google scholar
|
[30] |
M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, Fano resonances in photonics, Nat. Photonics 11(9), 543 (2017)
CrossRef
ADS
Google scholar
|
[31] |
H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, and S. Deng, Resonance coupling in silicon nanosphere—J-aggregate heterostructures, Nano Lett. 16(11), 6886 (2016)
CrossRef
ADS
Google scholar
|
[32] |
J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals, Nano Lett. 17(8), 4689 (2017)
CrossRef
ADS
Google scholar
|
[33] |
E. D. Palik, Handbook of Optical Constants of Solids, Vol. 3, Academic Press, 1998
|
[34] |
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, 2008
|
[35] |
A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, Strong magnetic response of submicron Silicon particles in the infrared, Opt. Express 19(6), 4815 (2011)
CrossRef
ADS
Google scholar
|
[36] |
G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P. F. Brevet, Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles, Phys. Rev. Lett. 101(19), 197401 (2008)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |