Electron drift velocity and mobility in graphene
Hai-Ming Dong, Yi-Feng Duan, Fei Huang, Jin-Long Liu
Electron drift velocity and mobility in graphene
We present a theoretical study of the electric transport properties of graphene-substrate systems. The drift velocity, mobility, and temperature of the electrons are self-consistently determined using the Boltzmann equilibrium equations. It is revealed that the electronic transport exhibits a distinctly nonlinear behavior. A very high mobility is achieved with the increase of the electric fields increase. The electron velocity is not completely saturated with the increase of the electric field. The temperature of the hot electrons depends quasi-linearly on the electric field. In addition, we show that the electron velocity, mobility, and electron temperature are sensitive to the electron density. These findings could be employed for the application of graphene for high-field nano-electronic devices.
graphene / mobility / nano-electronic devices
[1] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigoreva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef
ADS
Google scholar
|
[2] |
A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
CrossRef
ADS
Google scholar
|
[3] |
K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, Temperature-dependent transport in suspended graphene, Phys. Rev. Lett. 101(9), 096802 (2008)
CrossRef
ADS
Google scholar
|
[4] |
F. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature, Nano Lett. 10(2), 715 (2010)
CrossRef
ADS
Google scholar
|
[5] |
G. Liu, W. Stillman, S. Rumyantsev, Q. Shao, M. Shur, and A. A. Balandin, Low-frequency electronic noise in the double-gate single-layer graphene transistors, Appl. Phys. Lett. 95(3), 033103 (2009)
CrossRef
ADS
Google scholar
|
[6] |
L. M. Zhang and M. M. Fogler, Nonlinear screening and ballistic transport in a graphene p-n junction, Phys. Rev. Lett. 100(11), 116804 (2008)
CrossRef
ADS
Google scholar
|
[7] |
Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, Operation of graphene transistors at Gigahertz frequencies, Nano Lett. 9(1), 422 (2009)
CrossRef
ADS
Google scholar
|
[8] |
Y. Zhang and R. Tsu, Binding graphene sheets together using silicon: Graphene/silicon superlattice, Nanoscale Res. Lett. 5(5), 805 (2010)
CrossRef
ADS
Google scholar
|
[9] |
T. J. Echtermeyer, M. C. Lemme, J. Bolten, M. Baus, M. Ramsteiner, and H. Kurz, Graphene field-effect devices, Eur. Phys. J. Spec. Top. 148(1), 19 (2007)
CrossRef
ADS
Google scholar
|
[10] |
I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, Current saturation in zero-bandgap, top-gated graphene field-effect transistors, Nat. Nanotechnol. 3(11), 654 (2008)
CrossRef
ADS
Google scholar
|
[11] |
A. Barreiro, M. Lazzeri, J. Moser, F. Mauri, and A. Bachtold, Transport properties of graphene in the highcurrent limit, Phys. Rev. Lett. 103(7), 076601 (2009)
CrossRef
ADS
Google scholar
|
[12] |
J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nat. Nanotechnol. 3(4), 206 (2008)
CrossRef
ADS
Google scholar
|
[13] |
X. F. Wang and T. Chakraborty, Collective excitations of Dirac electrons in a graphene layer with spin-orbit interactions, Phys. Rev. B 75(3), 033408 (2007)
CrossRef
ADS
Google scholar
|
[14] |
X.-L. Lei, Balance Equation Approach to Electron Transport in Semiconductors, World Scientific, 2000
|
[15] |
X. F. Zhao, J. Zhang, S. M. Chen, and W. Xu, Cerenkov acoustic-phonon emission generated electrically from a polar semiconductor,J. Appl. Phys. 105(10), 104514 (2009)
CrossRef
ADS
Google scholar
|
[16] |
W. Xu, F. M. Peeters, and T. C. Lu, Dependence of resistivity on electron density and temperature in graphene, Phys. Rev. B 79(7), 073403 (2009)
CrossRef
ADS
Google scholar
|
[17] |
H. M. Dong, W. Xu, Z. Zeng, T. C. Lu, and F. M. Peeters, Quantum and transport conductivities in monolayer graphene, Phys. Rev. B 77(23), 235402 (2008)
CrossRef
ADS
Google scholar
|
[18] |
T. Stauber, N. M. R. Peres, and F. Guinea, Electronic transport in graphene: A semiclassical approach including midgap states, Phys. Rev. B 76(20), 205423 (2007)
CrossRef
ADS
Google scholar
|
[19] |
W. K. Tse and S. S. Das, Phonon-induced many-body renormalization of the electronic properties of graphene, Phys. Rev. Lett. 99(23), 236802 (2007)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |