Electron drift velocity and mobility in graphene

Hai-Ming Dong, Yi-Feng Duan, Fei Huang, Jin-Long Liu

PDF(258 KB)
PDF(258 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (2) : 137203. DOI: 10.1007/s11467-017-0744-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Electron drift velocity and mobility in graphene

Author information +
History +

Abstract

We present a theoretical study of the electric transport properties of graphene-substrate systems. The drift velocity, mobility, and temperature of the electrons are self-consistently determined using the Boltzmann equilibrium equations. It is revealed that the electronic transport exhibits a distinctly nonlinear behavior. A very high mobility is achieved with the increase of the electric fields increase. The electron velocity is not completely saturated with the increase of the electric field. The temperature of the hot electrons depends quasi-linearly on the electric field. In addition, we show that the electron velocity, mobility, and electron temperature are sensitive to the electron density. These findings could be employed for the application of graphene for high-field nano-electronic devices.

Keywords

graphene / mobility / nano-electronic devices

Cite this article

Download citation ▾
Hai-Ming Dong, Yi-Feng Duan, Fei Huang, Jin-Long Liu. Electron drift velocity and mobility in graphene. Front. Phys., 2018, 13(2): 137203 https://doi.org/10.1007/s11467-017-0744-0

References

[1]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigoreva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef ADS Google scholar
[2]
A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
CrossRef ADS Google scholar
[3]
K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, Temperature-dependent transport in suspended graphene, Phys. Rev. Lett. 101(9), 096802 (2008)
CrossRef ADS Google scholar
[4]
F. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature, Nano Lett. 10(2), 715 (2010)
CrossRef ADS Google scholar
[5]
G. Liu, W. Stillman, S. Rumyantsev, Q. Shao, M. Shur, and A. A. Balandin, Low-frequency electronic noise in the double-gate single-layer graphene transistors, Appl. Phys. Lett. 95(3), 033103 (2009)
CrossRef ADS Google scholar
[6]
L. M. Zhang and M. M. Fogler, Nonlinear screening and ballistic transport in a graphene p-n junction, Phys. Rev. Lett. 100(11), 116804 (2008)
CrossRef ADS Google scholar
[7]
Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, Operation of graphene transistors at Gigahertz frequencies, Nano Lett. 9(1), 422 (2009)
CrossRef ADS Google scholar
[8]
Y. Zhang and R. Tsu, Binding graphene sheets together using silicon: Graphene/silicon superlattice, Nanoscale Res. Lett. 5(5), 805 (2010)
CrossRef ADS Google scholar
[9]
T. J. Echtermeyer, M. C. Lemme, J. Bolten, M. Baus, M. Ramsteiner, and H. Kurz, Graphene field-effect devices, Eur. Phys. J. Spec. Top. 148(1), 19 (2007)
CrossRef ADS Google scholar
[10]
I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, Current saturation in zero-bandgap, top-gated graphene field-effect transistors, Nat. Nanotechnol. 3(11), 654 (2008)
CrossRef ADS Google scholar
[11]
A. Barreiro, M. Lazzeri, J. Moser, F. Mauri, and A. Bachtold, Transport properties of graphene in the highcurrent limit, Phys. Rev. Lett. 103(7), 076601 (2009)
CrossRef ADS Google scholar
[12]
J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nat. Nanotechnol. 3(4), 206 (2008)
CrossRef ADS Google scholar
[13]
X. F. Wang and T. Chakraborty, Collective excitations of Dirac electrons in a graphene layer with spin-orbit interactions, Phys. Rev. B 75(3), 033408 (2007)
CrossRef ADS Google scholar
[14]
X.-L. Lei, Balance Equation Approach to Electron Transport in Semiconductors, World Scientific, 2000
[15]
X. F. Zhao, J. Zhang, S. M. Chen, and W. Xu, Cerenkov acoustic-phonon emission generated electrically from a polar semiconductor,J. Appl. Phys. 105(10), 104514 (2009)
CrossRef ADS Google scholar
[16]
W. Xu, F. M. Peeters, and T. C. Lu, Dependence of resistivity on electron density and temperature in graphene, Phys. Rev. B 79(7), 073403 (2009)
CrossRef ADS Google scholar
[17]
H. M. Dong, W. Xu, Z. Zeng, T. C. Lu, and F. M. Peeters, Quantum and transport conductivities in monolayer graphene, Phys. Rev. B 77(23), 235402 (2008)
CrossRef ADS Google scholar
[18]
T. Stauber, N. M. R. Peres, and F. Guinea, Electronic transport in graphene: A semiclassical approach including midgap states, Phys. Rev. B 76(20), 205423 (2007)
CrossRef ADS Google scholar
[19]
W. K. Tse and S. S. Das, Phonon-induced many-body renormalization of the electronic properties of graphene, Phys. Rev. Lett. 99(23), 236802 (2007)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(258 KB)

Accesses

Citations

Detail

Sections
Recommended

/