Structural, optical, and thermal properties of MAX-phase Cr2AlB2

Xiao-Hong Li, Hong-Ling Cui, Rui-Zhou Zhang

PDF(2206 KB)
PDF(2206 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (2) : 136501. DOI: 10.1007/s11467-017-0743-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Structural, optical, and thermal properties of MAX-phase Cr2AlB2

Author information +
History +

Abstract

First-principles calculations of the structural, optical, and thermal properties of Cr2AlB2 are performed using the pseudopotential plane-wave method within the generalized gradient approximation (GGA). Calculation of the elastic constant and phonon dispersion indicates that Cr2AlB2 is mechanically and thermodynamically stable. Analysis of the band structure and density of states indicates that Cr2AlB2 is metallic. The thermal properties under increasing temperature and pressure are investigated using the quasi-harmonic Debye model. The results show that anharmonic effects on Cr2AlB2 are important at low temperature and high pressure. The calculated equilibrium primitive cell volume is 95.91 Å3 at T = 300 K, P = 0 GPa. The ability of Cr2AlB2 to resist volume changes becomes weaker with increasing temperature and stronger with increasing pressure. Analysis of optical properties of Cr2AlB2 shows that the static dielectric function of Cr2AlB2 is 53.1, and the refractive index n0 is 7.3. If the incident light has a frequency exceeding 16.09 eV, which is the plasma frequency of Cr2AlB2, Cr2AlB2 changes from metallic to dielectric material.

Keywords

electronic structure / optical properties / first-principles calculations / Cr2AlB2 / thermal properties

Cite this article

Download citation ▾
Xiao-Hong Li, Hong-Ling Cui, Rui-Zhou Zhang. Structural, optical, and thermal properties of MAX-phase Cr2AlB2. Front. Phys., 2018, 13(2): 136501 https://doi.org/10.1007/s11467-017-0743-1

References

[1]
M. W. Barsoum, The Mn+1AXn phases: A new class of solids, Prog. Solid State Chem. 28(1–4), 201 (2000)
CrossRef ADS Google scholar
[2]
P. Eklund, M. Beckers, U. Jansson, H. Hogberg, and L. Hultman, The Mn+1AXnphases: Materials science and thin-film processing, Thin Solid Films 518(8), 1851 (2010)
CrossRef ADS Google scholar
[3]
W. Jeitschko, Die Kristallstruktur von MoAlB, Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 97, 1472(1966)
[4]
W. Jeitschko, The crystal structure of Fe2AlB2, Acta Crystallogr. B 25(1), 163 (1969)
CrossRef ADS Google scholar
[5]
H. Y. Chung, M. B. Weinberger, J. B. Levine, A. Kavner, J. M. Yang, S. H. Tolbert, and R. B. Kaner, Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure, Science 316(5823), 436 (2007)
CrossRef ADS Google scholar
[6]
P. Rogl, in: Inorganic Reactions and Methods, edited by A. Hagen, New York: Wiley, 1991
[7]
A. J. Jr Frueh, Confirmation of the structure of chromium boride, CrB, Acta Crystallogr. 4(1), 66 (1951)
CrossRef ADS Google scholar
[8]
Y. B. Kuz’ma, Crystal structure of the compound YCrB4 and its analogs, Sov. Phys. Crystallogr. 15, 312 (1970)
[9]
Y. B. Kuz’ma and P. I. Krypyakevich, Crystal structure of Cr3AlB4, Dopovidi Akademii Nauk Ukrains’koi RSR, Seriya A-Fiziko-Tekhnichni ta Matematichni Nauki, 34, 1118 (1972)
[10]
M. Ade and H. Hillebrecht, Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: The first members of the series (CrB2)nCrAl with n= 1,2, 3 and a unifying concept for ternary borides as MAB-Phases, Inorg. Chem. 54(13), 6122 (2015)
CrossRef ADS Google scholar
[11]
P. Pavone, K. Karch, O. Schutt, D. Strauch, W. Windl, P. Giannozzi, and S. Baroni, Ab Initiolattice dynamics of diamond, Phys. Rev. B 48(5), 3156 (1993)
CrossRef ADS Google scholar
[12]
S. Biernacki and M. Scheffler, Negative thermal expansion of diamond and zinc-blende semiconductors, Phys. Rev. Lett. 63(3), 290 (1989)
CrossRef ADS Google scholar
[13]
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef ADS Google scholar
[14]
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[15]
P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem. 98(45), 11623 (1994)
CrossRef ADS Google scholar
[16]
L. Pan, T. C. Lu, and R. Su, Study of electronic structure and optical propertise of g-AlON crystal, Acta Physica Sinica 61, 027101 (2012)
[17]
K. Huang, Solid-State Physics, Beijing: Higher Education Press, 1998
[18]
X. C. Shen, The Spectrum and Optical Property of Semiconductor, Beijing: Science Press, 1992
[19]
P. Vinet, J. H. Rose, J. Ferrante, and J. R. Smith, Universal features of the equation of state of solids, J. Phys.: Condens. Matter 1(11), 1941 (1989)
CrossRef ADS Google scholar
[20]
A. Togo, F. Oba, and I. Tanaka, First-Principles calculations of the ferroelastic transition between rutiletype and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008)
CrossRef ADS Google scholar
[21]
F. D. Murnaghan, On the theory of the tension of an elastic cylinder, Proc. Natl. Acad. Sci. USA 30(12), 382 (1944)
CrossRef ADS Google scholar
[22]
M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, First-Principles simulation: Ideas, illustrations and the CASTEP Code, J. Phys.: Condens. Matter 14(11), 2717 (2002)
CrossRef ADS Google scholar
[23]
S. Wang, X. Yu, J. Zhang, Y. Zhang, L. Wang, K. Leinenweber, H. Xu, D. Popov, C. Park, W. Yang, D. He, and Y. Zhao, Crystal structures, elastic properties, and hardness of high-pressure synthesized CrB2 and CrB4, J. Superhard Mater. 36(4), 279 (2014)
CrossRef ADS Google scholar
[24]
S. K. R. Patil, S. V. Khare, B. R. Tuttle, J. K. Bording, and S. Kodambaka, Mechanical stability of possible structures of PtN investigated using first-principles calculations, Phys. Rev. B 73(10), 104118 (2006)
CrossRef ADS Google scholar
[25]
T. Ma, H. Li, X. Zheng, S. Wang, X. Wang, H. Zhao, S. Han, J. Liu, R. Zhang, P. Zhu, Y. Long, J. Cheng, Y. Ma, Y. Zhao, C. Jin, and X. Yu, Ultrastrong boron frameworks in ZrB12: A highway for electron conducting, Adv. Mater. 29(3), 1604003 (2017)
CrossRef ADS Google scholar
[26]
S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, The London, Edinbrugh, and Dublin Philosophical Magazine and Journal of Science 45(367), 823 (1954)
CrossRef ADS Google scholar
[27]
X. Q. Chen, H. Y. Niu, D. Z. Li, and Y. Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics 19(9), 1275 (2011)
CrossRef ADS Google scholar
[28]
W. L. Johnson and A. R. Williams, Structure and properties of transition-metal-metalloid glasses based on refractory metals, Phys. Rev. B 20(4), 1640 (1979)
CrossRef ADS Google scholar
[29]
A. P. Thakoor, J. L. Lamb, S. K. Khanna, M. Mehra, and W. L. Johnson, Refractory amorphous metallic (W0.6 Re0.4)76B24 coatings on steel substrates, J. Appl. Phys. 58(9), 3409 (1985)
CrossRef ADS Google scholar
[30]
L. Han, S. Wang, J. Zhu, S. Han, W. Li, B. Chen, X. Wang, X. Yu, B. Liu, R. Zhang, Y. Long, J. Cheng, J. Zhang, Y. Zhao, and C. Jin, Hardness, elastic, and electronic properties of chromium monoboride, Appl. Phys. Lett. 106(22), 221902 (2015)
CrossRef ADS Google scholar
[31]
S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73(2), 515 (2001)
CrossRef ADS Google scholar
[32]
P. Debye, Zur Theorie der spezifischen Wärmen, Ann. Phys. 344(14), 789 (1912)
CrossRef ADS Google scholar
[33]
A. T. Petit and P. L. Dulong, Recherches Sur quelques points importans de la theorie de la chaleur, Annales de chimie et de physique 10, 395 (1819)
[34]
M. D. Lokman Ali and M. D. Zahidur Rahaman, The Structural, elastic, electronic and optical properties of cubic perovskite SrVO3 compound: An ab initiostudy, International Journal of Materials Science and Applications 5(5), 202 (2016)
CrossRef ADS Google scholar
[35]
C. L. Li, H. Wang, B. Wang, and R. Wang, Firstprinciples study of the structure, electronic, and optical properties of orthorhombic BiInO3, Appl. Phys. Lett. 91(7), 071902 (2007)
CrossRef ADS Google scholar
[36]
H. Wang, B. Wang, Q. K. Li, Z. Y. Zhu, R. Wang, and C. H. Woo, First-principles study of the cubic perovskites BiMO3 (M= Al, Ga, In, and Sc), Phys. Rev. B 75(24), 245209 (2007)
CrossRef ADS Google scholar
[37]
M. Q. Cai, Z. Yin, and M. S. Zhang, First-principles study of optical properties of barium titanate, Appl. Phys. Lett. 83(14), 2805 (2003)
CrossRef ADS Google scholar
[38]
M. Xu, S. Y. Wang, G. Yin, J. Li, Y. X. Zheng, L. Y. Chen, and Y. Jia, Optical properties of cubic Ti3N4, Zr3N4 and Hf3N4, Appl. Phys. Lett. 89(15), 151908 (2006)
CrossRef ADS Google scholar
[39]
M. D. Rahman, M. Z. Rahaman, and M. A. Rahman, The structural, elastic, electronic and optical properties of MgCu under pressure: A first-principles study, Int. J. Mod. Phys. B 30(27), 1650199 (2016)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2206 KB)

Accesses

Citations

Detail

Sections
Recommended

/