Dynamic conductivity modified by impurity resonant states in doping three-dimensional Dirac semimetals

Shuai Li, Chen Wang, Shi-Han Zheng, Rui-Qiang Wang, Jun Li, Mou Yang

PDF(11102 KB)
PDF(11102 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (2) : 137303. DOI: 10.1007/s11467-017-0742-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Dynamic conductivity modified by impurity resonant states in doping three-dimensional Dirac semimetals

Author information +
History +

Abstract

The impurity effect is studied in three-dimensional Dirac semimetals in the framework of a T-matrix method to consider the multiple scattering events of Dirac electrons off impurities. It has been found that a strong impurity potential can significantly restructure the energy dispersion and the density of states of Dirac electrons. An impurity-induced resonant state emerges and significantly modifies the pristine optical response. It is shown that the impurity state disturbs the common longitudinal optical conductivity by creating either an optical conductivity peak or double absorption jumps, depending on the relative position of the impurity band and the Fermi level. More importantly, these conductivity features appear in the forbidden region between the Drude and interband transition, completely or partially filling the Pauli block region of optical response. The underlying physics is that the appearance of resonance states as well as the broadening of the bands leads to a more complicated selection rule for the optical transitions, making it possible to excite new electron-hole pairs in the forbidden region. These features in optical conductivity provide valuable information to understand the impurity behaviors in 3D Dirac materials.

Keywords

Dirac semimetals / impurity resonance states / optical conductivity

Cite this article

Download citation ▾
Shuai Li, Chen Wang, Shi-Han Zheng, Rui-Qiang Wang, Jun Li, Mou Yang. Dynamic conductivity modified by impurity resonant states in doping three-dimensional Dirac semimetals. Front. Phys., 2018, 13(2): 137303 https://doi.org/10.1007/s11467-017-0742-2

References

[1]
S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, Experimental realization of a three-dimensional Dirac semimetal, Phys. Rev. Lett. 113(2), 027603 (2014)
CrossRef ADS Google scholar
[2]
Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Discovery of a threedimensional topological Dirac semimetal Na3Bi, Science 343(6173), 864 (2014)
CrossRef ADS Google scholar
[3]
X. C. Pan, Y. M. Pan, J. Jiang, H. K. Zuo, H. M. Liu, X. L. Chen, Z. X. Wei, S. Zhang, Z. H. Wang, X. G. Wan, Z. R. Yang, D. L. Feng, Z. C. Xia, L. Li, F. Q. Song, B. G. Wang, Y. H. Zhang, and G. H. Wang, Carrier balance and linear magnetoresistance in type-II Weyl semimetal WTe2, Front. Phys. 12(3), 127203 (2017)
CrossRef ADS Google scholar
[4]
R. Yu, Z. Fang, X. Dai, and H. M. Weng, Topological nodal line semimetals predicted from first-principles calculations, Front. Phys. 12(3), 127202 (2017)
CrossRef ADS Google scholar
[5]
T. Wehling, A. Black-Schaffer, and A. Balatsky, Dirac materials, Adv. Phys. 63(1), 1 (2014)
CrossRef ADS Google scholar
[6]
D. Neubauer, J. P. Carbotte, A. A. Nateprov, A. Löhle, M. Dressel, and A. V. Pronin, Interband optical conductivity of the [001]-oriented Dirac semimetalCd3As2, Phys. Rev. B 93(12), 121202 (2016)
CrossRef ADS Google scholar
[7]
Z. G. Chen, R. Y. Chen, R. D. Zhong, J. Schneeloch, C. Zhang, Y. Huang, F. Qu, R. Yu, Q. Li, G. D. Gu, and N. L. Wang, Spectroscopic evidence for bulk-band inversion and three-dimensional massive Dirac fermions in ZrTe5, Proc. Natl. Acad. Sci. USA 114(5), 816 (2017)
CrossRef ADS Google scholar
[8]
T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity, Phys. Rev. B 87(23), 235121 (2013)
CrossRef ADS Google scholar
[9]
P. E. C. Ashby, and J. P. Carbotte, Chiral anomaly and optical absorption in Weyl semimetals, Phys. Rev. B 89(24), 245121 (2014)
CrossRef ADS Google scholar
[10]
C. J. Tabert, and J. P. Carbotte, Optical conductivity of Weyl semimetals and signatures of the gapped semimetal phase transition, Phys. Rev. B 93(8), 085442 (2016)
CrossRef ADS Google scholar
[11]
V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Unusual microwave response of Dirac quasiparticles in graphene, Phys. Rev. Lett. 96(25), 256802 (2006)
CrossRef ADS Google scholar
[12]
V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, On the universal ac optical background in graphene, New J. Phys. 11(9), 095013 (2009)
CrossRef ADS Google scholar
[13]
Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, Dirac charge dynamics in graphene by infrared spectroscopy, Nat. Phys. 4(7), 532 (2008)
[14]
R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science 320(5881), 1308 (2008)
CrossRef ADS Google scholar
[15]
K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, Measurement of the optical conductivity of graphene, Phys. Rev. Lett. 101(19), 196405 (2008)
CrossRef ADS Google scholar
[16]
C. J. Tabert, J. P. Carbotte, and E. J. Nicol, Optical and transport properties in three-dimensional Dirac and Weyl semimetals, Phys. Rev. B 93(8), 085426 (2016)
CrossRef ADS Google scholar
[17]
H. Z. Lu and S. Q. Shen, Quantum transport in topological semimetals under magnetic fields, Front. Phys. 12(3), 127201 (2017)
CrossRef ADS Google scholar
[18]
Y. P. Li, Z. Wang, P. S. Li, X. J. Yang, Z. X. Shen, F. Sheng, X. D. Li, Y. H. Lu, Y. Zheng, and Z. A. Xu, Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects, Front. Phys. 12(3), 127205 (2017)
CrossRef ADS Google scholar
[19]
B. Xu, Y. M. Dai, L. X. Zhao, K. Wang, R. Yang, W. Zhang, J. Y. Liu, H. Xiao, G. F. Chen, A. J. Taylor, D. A. Yarotski, R. P. Prasankumar, and X. G. Qiu, Optical spectroscopy of the Weyl semimetal TaAs, Phys. Rev. B 93(12), 121110 (2016)
CrossRef ADS Google scholar
[20]
A. V. Balatsky, I. Vekhter, and J. X. Zhu, Impurityinduced states in conventional and unconventional superconductors, Rev. Mod. Phys. 78(2), 373 (2006)
CrossRef ADS Google scholar
[21]
Z. H. Huang, D. P. Arovas, and A. V. Balatsky, Impurity scattering in Weyl semimetals and their stability classification, New J. Phys. 15(12), 123019 (2013)
CrossRef ADS Google scholar
[22]
S. H. Zheng, R. Q. Wang, M. Zhong, and H. J. Duan, Resonance states and beating pattern induced by quantum impurity scattering in Weyl/Dirac semimetals, Sci. Rep. 6(1), 36106 (2016)
CrossRef ADS Google scholar
[23]
R. R. Biswas and A. V. Balatsky, Impurity-induced states on the surface of three-dimensional topological insulators, Phys. Rev. B 81(23), 233405 (2010)
CrossRef ADS Google scholar
[24]
S. H. Zheng, M. X. Deng, J. M. Qiu, Q. H. Zhong, M. Yang, and R. Q. Wang, Interplay of quantum impurities and topological surface modes, Phys. Lett. A 379(43), 2890 (2015)
CrossRef ADS Google scholar
[25]
R. Q. Wang, L. Sheng, M. Yang, B. Wang, and D. Y. Xing, Electrically tunable Dirac-point resonance induced by a nanomagnet absorbed on the topological insulator surface, Phys. Rev. B 91(24), 245409 (2015)
CrossRef ADS Google scholar
[26]
A. M. Black-Schaffer, A. V. Balatsky, and J. Fransson, Filling of magnetic-impurity-induced gap in topological insulators by potential scattering, Phys. Rev. B 91(20), 201411 (2015)
CrossRef ADS Google scholar
[27]
R. Q. Wang, S. H. Zheng, and M. Yang, A new selffilling mechanism of band gap in magnetically doped topological surface states: Spin-flipping inelastic scattering, New J. Phys. 18(9), 093048 (2016)
CrossRef ADS Google scholar
[28]
Z. Alpichshev, R. R. Biswas, A. V. Balatsky, J. G. Analytis, J. H. Chu, I. R. Fisher, and A. Kapitulnik, STM imaging of impurity resonances on Bi2Se3, Phys. Rev. Lett. 108(20), 206402 (2012)
CrossRef ADS Google scholar
[29]
Y. Xu, J. Chiu, L. Miao, H. He, Z. Alpichshev, A. Kapitulnik, R. R. Biswas, and L. A. Wray, Disorder enabled band structure engineering of a topological insulator surface, Nat. Commun. 8, 14081 (2017)
CrossRef ADS Google scholar
[30]
M. X. Deng, W. Luo, W. Y. Deng, M. N. Chen, L. Sheng, and D. Y. Xing, Competing effects of magnetic impurities in the anomalous Hall effect on the surface of a topological insulator, Phys. Rev. B 94(23), 235116 (2016)
CrossRef ADS Google scholar
[31]
M. L. Teague, H. Chu, F. X. Xiu, L. He, K. L. Wang, and N. C. Yeh, Observation of Fermi-energy dependent unitary impurity resonances in a strong topological insulator Bi2Se3 with scanning tunneling spectroscopy, Solid State Commun. 152(9), 747 (2012)
CrossRef ADS Google scholar
[32]
M. Zhong, S. Li, H. J. Duan, L. B. Hu, M. Yang, and R. Q. Wang, Effect of impurity resonant states on optical and thermoelectric properties on the surface of a topological insulator, Sci. Rep. 7(1), 3971 (2017)
CrossRef ADS Google scholar
[33]
E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O. Sukhachov, Origin of dissipative Fermi arc transport in Weyl semimetals, Phys. Rev. B 93(23), 235127 (2016)
CrossRef ADS Google scholar
[34]
H. Z. Lu, S. B. Zhang, and S. Q. Shen, High-field magnetoconductivity of topological semimetals with short range potential, Phys. Rev. B 92(4), 045203 (2015)
CrossRef ADS Google scholar
[35]
N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Electronic properties of disordered two-dimensional carbon, Phys. Rev. B 73(12), 125411 (2006)
CrossRef ADS Google scholar
[36]
G. D. Mahan, Many-Particle Physics, 3rd Ed., Plenum, 1993
[37]
F. Parhizgar, A. G. Moghaddam, and R. Asgari, Optical response and activity of ultrathin films of topological insulators, Phys. Rev. B 92(4), 045429 (2015)
CrossRef ADS Google scholar
[38]
N. A. Sinitsyn, J. E. Hill, H. Min, J. Sinova, and A. H. MacDonald, Charge and spin Hall conductivity in metallic graphene, Phys. Rev. Lett. 97(10), 106804 (2006)
CrossRef ADS Google scholar
[39]
V. P. Gusynin, S. G. Sharapov, and A. A. Varlamov, Spin Nernst effect and intrinsic magnetization in twodimensional Dirac materials, Low Temp. Phys. 41(5), 342 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(11102 KB)

Accesses

Citations

Detail

Sections
Recommended

/