Dynamic conductivity modified by impurity resonant states in doping three-dimensional Dirac semimetals
Shuai Li, Chen Wang, Shi-Han Zheng, Rui-Qiang Wang, Jun Li, Mou Yang
Dynamic conductivity modified by impurity resonant states in doping three-dimensional Dirac semimetals
The impurity effect is studied in three-dimensional Dirac semimetals in the framework of a T-matrix method to consider the multiple scattering events of Dirac electrons off impurities. It has been found that a strong impurity potential can significantly restructure the energy dispersion and the density of states of Dirac electrons. An impurity-induced resonant state emerges and significantly modifies the pristine optical response. It is shown that the impurity state disturbs the common longitudinal optical conductivity by creating either an optical conductivity peak or double absorption jumps, depending on the relative position of the impurity band and the Fermi level. More importantly, these conductivity features appear in the forbidden region between the Drude and interband transition, completely or partially filling the Pauli block region of optical response. The underlying physics is that the appearance of resonance states as well as the broadening of the bands leads to a more complicated selection rule for the optical transitions, making it possible to excite new electron-hole pairs in the forbidden region. These features in optical conductivity provide valuable information to understand the impurity behaviors in 3D Dirac materials.
Dirac semimetals / impurity resonance states / optical conductivity
[1] |
S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, Experimental realization of a three-dimensional Dirac semimetal, Phys. Rev. Lett. 113(2), 027603 (2014)
CrossRef
ADS
Google scholar
|
[2] |
Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Discovery of a threedimensional topological Dirac semimetal Na3Bi, Science 343(6173), 864 (2014)
CrossRef
ADS
Google scholar
|
[3] |
X. C. Pan, Y. M. Pan, J. Jiang, H. K. Zuo, H. M. Liu, X. L. Chen, Z. X. Wei, S. Zhang, Z. H. Wang, X. G. Wan, Z. R. Yang, D. L. Feng, Z. C. Xia, L. Li, F. Q. Song, B. G. Wang, Y. H. Zhang, and G. H. Wang, Carrier balance and linear magnetoresistance in type-II Weyl semimetal WTe2, Front. Phys. 12(3), 127203 (2017)
CrossRef
ADS
Google scholar
|
[4] |
R. Yu, Z. Fang, X. Dai, and H. M. Weng, Topological nodal line semimetals predicted from first-principles calculations, Front. Phys. 12(3), 127202 (2017)
CrossRef
ADS
Google scholar
|
[5] |
T. Wehling, A. Black-Schaffer, and A. Balatsky, Dirac materials, Adv. Phys. 63(1), 1 (2014)
CrossRef
ADS
Google scholar
|
[6] |
D. Neubauer, J. P. Carbotte, A. A. Nateprov, A. Löhle, M. Dressel, and A. V. Pronin, Interband optical conductivity of the [001]-oriented Dirac semimetalCd3As2, Phys. Rev. B 93(12), 121202 (2016)
CrossRef
ADS
Google scholar
|
[7] |
Z. G. Chen, R. Y. Chen, R. D. Zhong, J. Schneeloch, C. Zhang, Y. Huang, F. Qu, R. Yu, Q. Li, G. D. Gu, and N. L. Wang, Spectroscopic evidence for bulk-band inversion and three-dimensional massive Dirac fermions in ZrTe5, Proc. Natl. Acad. Sci. USA 114(5), 816 (2017)
CrossRef
ADS
Google scholar
|
[8] |
T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity, Phys. Rev. B 87(23), 235121 (2013)
CrossRef
ADS
Google scholar
|
[9] |
P. E. C. Ashby, and J. P. Carbotte, Chiral anomaly and optical absorption in Weyl semimetals, Phys. Rev. B 89(24), 245121 (2014)
CrossRef
ADS
Google scholar
|
[10] |
C. J. Tabert, and J. P. Carbotte, Optical conductivity of Weyl semimetals and signatures of the gapped semimetal phase transition, Phys. Rev. B 93(8), 085442 (2016)
CrossRef
ADS
Google scholar
|
[11] |
V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Unusual microwave response of Dirac quasiparticles in graphene, Phys. Rev. Lett. 96(25), 256802 (2006)
CrossRef
ADS
Google scholar
|
[12] |
V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, On the universal ac optical background in graphene, New J. Phys. 11(9), 095013 (2009)
CrossRef
ADS
Google scholar
|
[13] |
Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, Dirac charge dynamics in graphene by infrared spectroscopy, Nat. Phys. 4(7), 532 (2008)
|
[14] |
R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science 320(5881), 1308 (2008)
CrossRef
ADS
Google scholar
|
[15] |
K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, Measurement of the optical conductivity of graphene, Phys. Rev. Lett. 101(19), 196405 (2008)
CrossRef
ADS
Google scholar
|
[16] |
C. J. Tabert, J. P. Carbotte, and E. J. Nicol, Optical and transport properties in three-dimensional Dirac and Weyl semimetals, Phys. Rev. B 93(8), 085426 (2016)
CrossRef
ADS
Google scholar
|
[17] |
H. Z. Lu and S. Q. Shen, Quantum transport in topological semimetals under magnetic fields, Front. Phys. 12(3), 127201 (2017)
CrossRef
ADS
Google scholar
|
[18] |
Y. P. Li, Z. Wang, P. S. Li, X. J. Yang, Z. X. Shen, F. Sheng, X. D. Li, Y. H. Lu, Y. Zheng, and Z. A. Xu, Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects, Front. Phys. 12(3), 127205 (2017)
CrossRef
ADS
Google scholar
|
[19] |
B. Xu, Y. M. Dai, L. X. Zhao, K. Wang, R. Yang, W. Zhang, J. Y. Liu, H. Xiao, G. F. Chen, A. J. Taylor, D. A. Yarotski, R. P. Prasankumar, and X. G. Qiu, Optical spectroscopy of the Weyl semimetal TaAs, Phys. Rev. B 93(12), 121110 (2016)
CrossRef
ADS
Google scholar
|
[20] |
A. V. Balatsky, I. Vekhter, and J. X. Zhu, Impurityinduced states in conventional and unconventional superconductors, Rev. Mod. Phys. 78(2), 373 (2006)
CrossRef
ADS
Google scholar
|
[21] |
Z. H. Huang, D. P. Arovas, and A. V. Balatsky, Impurity scattering in Weyl semimetals and their stability classification, New J. Phys. 15(12), 123019 (2013)
CrossRef
ADS
Google scholar
|
[22] |
S. H. Zheng, R. Q. Wang, M. Zhong, and H. J. Duan, Resonance states and beating pattern induced by quantum impurity scattering in Weyl/Dirac semimetals, Sci. Rep. 6(1), 36106 (2016)
CrossRef
ADS
Google scholar
|
[23] |
R. R. Biswas and A. V. Balatsky, Impurity-induced states on the surface of three-dimensional topological insulators, Phys. Rev. B 81(23), 233405 (2010)
CrossRef
ADS
Google scholar
|
[24] |
S. H. Zheng, M. X. Deng, J. M. Qiu, Q. H. Zhong, M. Yang, and R. Q. Wang, Interplay of quantum impurities and topological surface modes, Phys. Lett. A 379(43), 2890 (2015)
CrossRef
ADS
Google scholar
|
[25] |
R. Q. Wang, L. Sheng, M. Yang, B. Wang, and D. Y. Xing, Electrically tunable Dirac-point resonance induced by a nanomagnet absorbed on the topological insulator surface, Phys. Rev. B 91(24), 245409 (2015)
CrossRef
ADS
Google scholar
|
[26] |
A. M. Black-Schaffer, A. V. Balatsky, and J. Fransson, Filling of magnetic-impurity-induced gap in topological insulators by potential scattering, Phys. Rev. B 91(20), 201411 (2015)
CrossRef
ADS
Google scholar
|
[27] |
R. Q. Wang, S. H. Zheng, and M. Yang, A new selffilling mechanism of band gap in magnetically doped topological surface states: Spin-flipping inelastic scattering, New J. Phys. 18(9), 093048 (2016)
CrossRef
ADS
Google scholar
|
[28] |
Z. Alpichshev, R. R. Biswas, A. V. Balatsky, J. G. Analytis, J. H. Chu, I. R. Fisher, and A. Kapitulnik, STM imaging of impurity resonances on Bi2Se3, Phys. Rev. Lett. 108(20), 206402 (2012)
CrossRef
ADS
Google scholar
|
[29] |
Y. Xu, J. Chiu, L. Miao, H. He, Z. Alpichshev, A. Kapitulnik, R. R. Biswas, and L. A. Wray, Disorder enabled band structure engineering of a topological insulator surface, Nat. Commun. 8, 14081 (2017)
CrossRef
ADS
Google scholar
|
[30] |
M. X. Deng, W. Luo, W. Y. Deng, M. N. Chen, L. Sheng, and D. Y. Xing, Competing effects of magnetic impurities in the anomalous Hall effect on the surface of a topological insulator, Phys. Rev. B 94(23), 235116 (2016)
CrossRef
ADS
Google scholar
|
[31] |
M. L. Teague, H. Chu, F. X. Xiu, L. He, K. L. Wang, and N. C. Yeh, Observation of Fermi-energy dependent unitary impurity resonances in a strong topological insulator Bi2Se3 with scanning tunneling spectroscopy, Solid State Commun. 152(9), 747 (2012)
CrossRef
ADS
Google scholar
|
[32] |
M. Zhong, S. Li, H. J. Duan, L. B. Hu, M. Yang, and R. Q. Wang, Effect of impurity resonant states on optical and thermoelectric properties on the surface of a topological insulator, Sci. Rep. 7(1), 3971 (2017)
CrossRef
ADS
Google scholar
|
[33] |
E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O. Sukhachov, Origin of dissipative Fermi arc transport in Weyl semimetals, Phys. Rev. B 93(23), 235127 (2016)
CrossRef
ADS
Google scholar
|
[34] |
H. Z. Lu, S. B. Zhang, and S. Q. Shen, High-field magnetoconductivity of topological semimetals with short range potential, Phys. Rev. B 92(4), 045203 (2015)
CrossRef
ADS
Google scholar
|
[35] |
N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Electronic properties of disordered two-dimensional carbon, Phys. Rev. B 73(12), 125411 (2006)
CrossRef
ADS
Google scholar
|
[36] |
G. D. Mahan, Many-Particle Physics, 3rd Ed., Plenum, 1993
|
[37] |
F. Parhizgar, A. G. Moghaddam, and R. Asgari, Optical response and activity of ultrathin films of topological insulators, Phys. Rev. B 92(4), 045429 (2015)
CrossRef
ADS
Google scholar
|
[38] |
N. A. Sinitsyn, J. E. Hill, H. Min, J. Sinova, and A. H. MacDonald, Charge and spin Hall conductivity in metallic graphene, Phys. Rev. Lett. 97(10), 106804 (2006)
CrossRef
ADS
Google scholar
|
[39] |
V. P. Gusynin, S. G. Sharapov, and A. A. Varlamov, Spin Nernst effect and intrinsic magnetization in twodimensional Dirac materials, Low Temp. Phys. 41(5), 342 (2015)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |