Spontaneous ferroelectricity in strained low-temperature monoclinic Fe3O4: A first-principles study
Xiang Liu, Wen-Bo Mi
Spontaneous ferroelectricity in strained low-temperature monoclinic Fe3O4: A first-principles study
As a single-phase multiferroic material, Fe3O4 exhibits spontaneous ferroelectric polarization below 38 K. However, the nature of the ferroelectricity in Fe3O4 and effect of external disturbances such as strain on it remains ambiguous. Here, the spontaneous ferroelectric polarization of low-temperature monoclinic Fe3O4 was investigated by first-principles calculations. The pseudo-centrosymmetric FeB42−FeB43 pair has a different valence state. The noncentrosymmetric charge distribution results in ferroelectric polarization. The initial ferroelectric polarization direction is in the −x and −z directions. The ferroelectricity along the y axis is limited owing to the symmetry of the Cc space group. Both the ionic displacement and charge separation at the FeB42−FeB43 pair are affected by strain, which further influences the spontaneous ferroelectric polarization of monoclinic Fe3O4. The ferroelectric polarization along the z axis exhibits an increase of 45.3% as the strain changes from 6% to −6%.
spontaneous ferroelectric polarization / charge ordering / biaxial strain / Berry phase / modern theory of polarization
[1] |
J. F. Scott, Data storage: Multiferroic memories, Nat. Mater. 6(4), 256 (2007)
CrossRef
ADS
Google scholar
|
[2] |
N. Balke, S. Choudhury, S. Jesse, M. Huijben, Y. H. Chu, A. P. Baddorf, L. Q. Chen, R. Ramesh, and S. V. Kalinin, Deterministic control of ferroelastic switching in multiferroic materials, Nat. Nanotechnol. 4(12), 868 (2009)
CrossRef
ADS
Google scholar
|
[3] |
M. Liu, Z. Y. Zhou, T. X. Nan, B. M. Howe, G. J. Brown, and N. X. Sun, Voltage tuning of ferromagnetic resonance with bistable magnetization switching in energy-efficient magnetoelectric composites, Adv. Mater. 25(10), 1435 (2013)
CrossRef
ADS
Google scholar
|
[4] |
P. W. M. Blom, R. M. Wolf, J. F. M. Cillessen, and M. P. C. M. Krijn, Ferroelectric Schottky diode, Phys. Rev. Lett. 73(15), 2107 (1994)
CrossRef
ADS
Google scholar
|
[5] |
M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthélémy, and A. Fert, Tunnel junctions with multiferroic barriers, Nat. Mater. 6(4), 296 (2007)
CrossRef
ADS
Google scholar
|
[6] |
H. Kohlstedt, A. Petraru, K. Szot, A. Rüdiger, P. Meuffels, H. Haselier, R. Waser, and V. Nagarajan, Method to distinguish ferroelectric from nonferroelectric origin in case of resistive switching in ferroelectric capacitors, Appl. Phys. Lett. 92(6), 062907 (2008)
CrossRef
ADS
Google scholar
|
[7] |
C. H. Yang, J. Seidel, S. Y. Kim, P. B. Rossen, P. Yu, M. Gajek, Y. H. Chu, L. W. Martin, M. B. Holcomb, Q. He, P. Maksymovych, N. Balke, S. V. Kalinin, A. P. Baddorf, S. R. Basu, M. L. Scullin, and R. Ramesh, Electric modulation of conduction in multiferroic Cadoped BiFeO3 films, Nat. Mater. 8(6), 485 (2009)
CrossRef
ADS
Google scholar
|
[8] |
W. D. Wu, J. R. Guest, Y. Horibe, S. Park, T. Choi, S. W. Cheong, and M. Bode, Polarization-modulated rectification at ferroelectric surfaces, Phys. Rev. Lett. 104(21), 217601 (2010)
CrossRef
ADS
Google scholar
|
[9] |
Ch. Binek, A. Hochstrat, X. Chen, P. Borisov, W. Kleemann, and B. Doudin, Electrically controlled exchange bias for spintronic applications, J. Appl. Phys. 97, 10C514 (2005)
|
[10] |
Z. Zhou, X. Y. Zhang, T. F. Xie, T. X. Nan, Y. Gao, X. Yang, X. J. Wang, X. Y. He, P. S. Qiu, N. X. Sun, and D. Z. Sun, Strong non-volatile voltage control of magnetism in magnetic/antiferroelectric magnetoelectric heterostructures, Appl. Phys. Lett. 104(1), 012905 (2014)
CrossRef
ADS
Google scholar
|
[11] |
Z. Q. Hu, T. X. Nan, X. J. Wang, M. Staruch, Y. Gao, P. Finkel, and N. X. Sun, Voltage control of magnetism in FeGaB/PIN-PMN-PT multiferroic heterostructures for high-power and high-temperature applications, Appl. Phys. Lett. 106(2), 022901 (2015)
CrossRef
ADS
Google scholar
|
[12] |
S. Cherepov, P. Khalili Amiri, J. G. Alzate, K. Wong, M. Lewis, P. Upadhyaya, J. Nath, M. Bao, A. Bur, T. Wu, G. P. Carman, A. Khitun, and K. L. Wang, Electric-field-induced spin wave generation using multiferroic magnetoelectric cells, Appl. Phys. Lett. 104(8), 082403 (2014)
CrossRef
ADS
Google scholar
|
[13] |
P. A. Miles, W. B. Westphal, and A. Von Hippel, Dielectric spectroscopy of ferromagnetic semiconductors, Rev. Mod. Phys. 29(3), 279 (1957)
CrossRef
ADS
Google scholar
|
[14] |
A. Yanase and K. Siratori, Band structure in the high temperature phase of Fe3O4, J. Phys. Soc. Jpn. 53(1), 312 (1984)
CrossRef
ADS
Google scholar
|
[15] |
J. P. Attfield, The Verwey phase of magnetite: A longrunning mystery in ferrites, J.Jpn. Soc. Powder Powder Metall. 61(S1), S43 (2014)
CrossRef
ADS
Google scholar
|
[16] |
E. J. Verwey, Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures, Nature 144(3642), 327 (1939)
CrossRef
ADS
Google scholar
|
[17] |
M. Alexe, M. Ziese, D. Hesse, P. Esquinazi, K. Yamauchi, T. Fukushima, S. Picozzi, and U. Gösele, Ferroelectric switching in multiferroic magnetite (Fe3O4) thin films, Adv. Mater. 21(44), 4452 (2009)
CrossRef
ADS
Google scholar
|
[18] |
K. Kato and S. Iida, Magnetoelectric effects of Fe3O4 at 4.2 K, J. Phys. Soc. Jpn. 50(9), 2844 (1981)
CrossRef
ADS
Google scholar
|
[19] |
K. Yamauchi, T. Fukushima, and S. Picozzi, Ferroelectricity in multiferroic magnetite Fe3O4 driven by noncentrosymmetric Fe2+/Fe3+ charge-ordering: Firstprinciples study, Phys. Rev. B 79(21), 212404 (2009)
CrossRef
ADS
Google scholar
|
[20] |
K. Kato and S. Iida, Observation of ferroelectric hysteresis loop of Fe3O4 at 4.2 K, J. Phys. Soc. Jpn. 51(5), 1335 (1982)
CrossRef
ADS
Google scholar
|
[21] |
Y. Miyamoto and K. Ishiyama, Measurement of spontaneous electric polarization in magnetite (Fe3O4) at 4.2 K, Solid State Commun. 87(6), 581 (1993)
CrossRef
ADS
Google scholar
|
[22] |
R. D. King-Smith and D. Vanderbilt, Theory of polarization of crystalline solids,Phys. Rev. B 47(3), 1651 (1993)
CrossRef
ADS
Google scholar
|
[23] |
D. Vanderbilt and R. D. King-Smith, Electric polarization as a bulk quantity and its relation to surface charge, Phys. Rev. B 58(7), 4442 (1993)
CrossRef
ADS
Google scholar
|
[24] |
R. Resta, Macroscopic polarization in crystalline dielectrics: The geometric phase approach, Rev. Mod. Phys. 66(3), 899 (1994)
CrossRef
ADS
Google scholar
|
[25] |
J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, First-principles study of spontaneous polarization in multiferroic BiFeO3, Phys. Rev. B 71(1), 014113 (2005)
CrossRef
ADS
Google scholar
|
[26] |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef
ADS
Google scholar
|
[27] |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef
ADS
Google scholar
|
[28] |
H. T. Jeng, G. Y. Guo, and D. J. Huang, Charge-orbital ordering in low-temperature structures of magnetite: GGA+Uinvestigations, Phys. Rev. B 74(19), 195115 (2006)
CrossRef
ADS
Google scholar
|
[29] |
J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45(23), 13244 (1992)
CrossRef
ADS
Google scholar
|
[30] |
V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory and Mott insulators: Hubbard Uinstead of Stoner I, Phys. Rev. B 44(3), 943 (1991)
CrossRef
ADS
Google scholar
|
[31] |
A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Density-functional theory and strong interactions: Orbital ordering in Mott–Hubbard insulators, Phys. Rev. B 52(8), R5467 (1995)
CrossRef
ADS
Google scholar
|
[32] |
M. S. Senn, J. P. Wright, and J. P. Attfield, Charge order and three-site distortions in the Verwey structure of magnetite, Nature 481(7380), 173 (2011)
CrossRef
ADS
Google scholar
|
[33] |
M. I. Aroyo, J. M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, and H. Wondratschke, Bilbao crystallographic server (I): Databases and crystallographic computing programs, Zeitschrift für Kristallographie-Cryst. Mater. 221, 15 (2006)
|
[34] |
M. I. Aroyo, A. Kirov, C. Capillas, J. M. Perez-Mato, and H. Wondratschek, Bilbao Crystallographic Server II: Representations of crystallographic point groups and space groups, Acta Crystallogr. A 62(2), 115 (2006)
CrossRef
ADS
Google scholar
|
[35] |
M. I. Aroyo, J. M. Perez-Mato, D. Orobengoa, E. Tasci, G. de la Flor, and A. Kirov, Crystallography online: Bilbao crystallographic server, Izv. Him. 43, 183 (2011)
|
[36] |
P. Baettig, C. Ederer, and N. A. Spaldin, First principles study of the multiferroics BiFeO3, Bi2FeCrO6, and BiCrO3: Structure, polarization, and magnetic ordering temperature, Phys. Rev. B 72(21), 214105 (2005)
CrossRef
ADS
Google scholar
|
[37] |
X. Y. Hou, X. C. Wang, G. F. Chen, and W. B. Mi, Electric field tunable half-metallic characteristic at Fe3O4/BaTiO3 interfaces, Phys. Chem. Chem. Phys. 19(6), 4330 (2017)
CrossRef
ADS
Google scholar
|
[38] |
I. D. Brown and D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database, Acta Crystallogr. B 41(4), 244 (1985)
CrossRef
ADS
Google scholar
|
[39] |
I. D. Brown, Chemical and steric constrains in inorganic solids, Acta Cyrst. B 48(5), 553 (1992)
CrossRef
ADS
Google scholar
|
[40] |
N. E. Brese and M. O’Keeffe, Bond-valence parameters for solids, Acta Crystallogr. B 47(2), 192 (1991)
CrossRef
ADS
Google scholar
|
[41] |
X. Liu, L. Yin, and W. B. Mi, Biaxial strain effect induced electronic structure alternation and trimeron recombination in Fe3O4, Sci. Rep. 7, 43403 (2017)
CrossRef
ADS
Google scholar
|
[42] |
N. A. Spaldin, A beginner’s guide to the modern theory of polarization, J. Solid State Chem. 195, 2 (2012)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |