Chimera states in bipartite networks of FitzHugh–Nagumo oscillators

Zhi-Min Wu, Hong-Yan Cheng, Yuee Feng, Hai-Hong Li, Qiong-Lin Dai, Jun-Zhong Yang

PDF(4296 KB)
PDF(4296 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (2) : 130503. DOI: 10.1007/s11467-017-0737-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Chimera states in bipartite networks of FitzHugh–Nagumo oscillators

Author information +
History +

Abstract

Chimera states consisting of spatially coherent and incoherent domains have been observed in different topologies such as rings, spheres, and complex networks. In this paper, we investigate bipartite networks of nonlocally coupled FitzHugh–Nagumo (FHN) oscillators in which the units are allocated evenly to two layers, and FHN units interact with each other only when they are in different layers. We report the existence of chimera states in bipartite networks. Owing to the interplay between chimera states in the two layers, many types of chimera states such as in-phase chimera states, antiphase chimera states, and out-of-phase chimera states are classified. Stability diagrams of several typical chimera states in the coupling strength–coupling radius plane, which show strong multistability of chimera states, are explored.

Keywords

chimera states / bipartite networks / FitzHugh–Nagumo oscillators

Cite this article

Download citation ▾
Zhi-Min Wu, Hong-Yan Cheng, Yuee Feng, Hai-Hong Li, Qiong-Lin Dai, Jun-Zhong Yang. Chimera states in bipartite networks of FitzHugh–Nagumo oscillators. Front. Phys., 2018, 13(2): 130503 https://doi.org/10.1007/s11467-017-0737-z

References

[1]
Y. Kuramoto and D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst. 5, 380 (2002), arXiv: cond-mat/0210694
[2]
D. Tanaka and Y. Kuramoto, Complex Ginzburg- Landau equation with nonlocal coupling, Phys. Rev. E 68(2), 026219 (2003)
CrossRef ADS Google scholar
[3]
S. I. Shima and Y. Kuramoto, Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators, Phys. Rev. E 69(3), 036213 (2004)
CrossRef ADS Google scholar
[4]
D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett. 93(17), 174102 (2004)
CrossRef ADS Google scholar
[5]
D. M. Abrams and S. H. Strogatz, Chimera states in a ring of nonlocally coupled oscillators, Int. J. Bifurcat. Chaos 16(01), 21 (2006)
CrossRef ADS Google scholar
[6]
N. C. Rattenborg, C. J. Amlaner, and S. L. Lima, Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep, Neurosci. Biobehav. Rev. 24(8), 817 (2000)
CrossRef ADS Google scholar
[7]
A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa, Spontaneous synchrony in power-grid networks, Nat. Phys. 9(3), 191 (2013)
[8]
J. C. González-Avella, M. G. Cosenza, and M. San Miguel, Localized coherence in two interacting populations of social agents, Physica A 399, 24 (2014)
CrossRef ADS Google scholar
[9]
D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley, Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett. 101(8), 084103 (2008)
CrossRef ADS Google scholar
[10]
G. C. Sethia, A. Sen, and F. M. Atay, Clustered chimera states in delay-coupled oscillator systems, Phys. Rev. Lett. 100(14), 144102 (2008)
CrossRef ADS Google scholar
[11]
Y. Zhu, Y. Li, M. Zhang, and J. Yang, The oscillating two-cluster chimera state in non-locally coupled phase oscillators, Europhys. Lett. 97(1), 10009 (2012)
CrossRef ADS Google scholar
[12]
C. R. Laing, The dynamics of chimera states in heterogeneous Kuramoto networks, Physica D 238(16), 1569(2009)
CrossRef ADS Google scholar
[13]
C. H. Tian, X. Y. Zhang, Z. H. Wang, and Z. H. Liu, Diversity of chimera-like patterns from a model of 2D arrays of neurons with nonlocal coupling, Front. Phys. 12(3), 128904 (2017)
CrossRef ADS Google scholar
[14]
T. Bountis, V. G. Kanas, J. Hizanidis, and A. Bezerianos, Chimera states in a two–population network of coupled pendulum–like elements, Eur. Phys. J. Spec. Top. 223(4), 721 (2014)
CrossRef ADS Google scholar
[15]
I. Omelchenko, Y. Maistrenko, P. Hövel, and E. Schöll, Loss of coherence in dynamical networks: Spatial chaos and chimera states, Phys. Rev. Lett. 106(23), 234102 (2011)
CrossRef ADS Google scholar
[16]
I. Omelchenko, O. E. Omelchenko, P. Hövel, and E. Schöll, When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states, Phys. Rev. Lett. 110(22), 224101 (2013)
CrossRef ADS Google scholar
[17]
N. Semenova, A. Zakharova, V. Anishchenko, and E. Schöll, Coherence-resonance chimeras in a network of excitable elements, Phys. Rev. Lett. 117(1), 014102 (2016)
CrossRef ADS Google scholar
[18]
T. Isele, J. Hizanidis, A. Provata, and P. Hövel, Controlling chimera states: The influence of excitable units, Phys. Rev. E 93(2), 022217 (2016)
CrossRef ADS Google scholar
[19]
E. A. Martens, C. R. Laing, and S. H. Strogatz, Solvable model of spiral wave chimeras, Phys. Rev. Lett. 104(4), 044101 (2010)
CrossRef ADS Google scholar
[20]
C. Gu, G. St-Yves, and J. Davidsen, Spiral wave chimeras in complex oscillatory and chaotic systems, Phys. Rev. Lett. 111(13), 134101 (2013)
CrossRef ADS Google scholar
[21]
M. J. Panaggio and D. M. Abrams, Chimera states on a flat torus, Phys. Rev. Lett. 110(9), 094102 (2013)
CrossRef ADS Google scholar
[22]
M. J. Panaggio and D. M. Abrams, Chimera states on the surface of a sphere, Phys. Rev. E 91(2), 022909 (2015)
CrossRef ADS Google scholar
[23]
Y. Zhu, Z. Zheng, and J. Yang, Chimera states on complex networks, Phys. Rev. E 89(2), 022914 (2014)
CrossRef ADS Google scholar
[24]
N. Yao, Z. G. Huang, Y. C. Lai, and Z. G. Zheng, Robustness of chimera states in complex dynamical systems, Sci. Rep. 3(1), 3522 (2013)
CrossRef ADS Google scholar
[25]
B. K. Bera, S. Majhi, D. Ghosh, and M. Perc, Chimera states: Effects of different coupling topologies, EPL 118(1), 10001 (2017)
CrossRef ADS Google scholar
[26]
S. Ghosh, A. Kumar, A. Zakharova, and S. Jalan, Birth and death of chimera: Interplay of delay and multiplexing, EPL 115(6), 60005 (2016)
CrossRef ADS Google scholar
[27]
V. A. Maksimenko, V. V. Makarov, B. K. Bera, D. Ghosh, S. K. Dana, M. V. Goremyko, N. S. Frolov, A. A. Koronovskii, and A. E. Hramov, Excitation and suppression of chimera states by multiplexing, Phys. Rev. E 94(5), 052205 (2016)
CrossRef ADS Google scholar
[28]
S. Majhi, M. Perc, and D. Ghosh, Chimera states in uncoupled neurons induced by a multilayer structure, Sci. Rep. 6(1), 39033 (2016)
CrossRef ADS Google scholar
[29]
S. Majhi, M. Perc, and D. Ghosh, Chimera states in a multilayer network of coupled and uncoupled neurons, Chaos 27(7), 073109 (2017)
CrossRef ADS Google scholar
[30]
S. Rakshit, B. K. Bera, M. Perc, and D. Ghosh, Basin stability for chimera states, Sci. Rep. 7(1), 2412 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(4296 KB)

Accesses

Citations

Detail

Sections
Recommended

/