Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation

Xue-Rong Hu, Ji-Ming Zheng, Zhao-Yu Ren

PDF(4579 KB)
PDF(4579 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (2) : 137302. DOI: 10.1007/s11467-017-0736-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation

Author information +
History +

Abstract

Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the heterostructure, and charges transfer from graphene to phosphorene, causing the Fermi level of the heterostructure to shift downward with respect to the Dirac point of graphene. Significantly, strong coupling between two layers is discovered in the band spectrum even though it has a van der Waals heterostructure. A tight-binding Hamiltonian model is used to reveal that the resonance of the Bloch states between the phosphorene and graphene layers in certain K points combines with the symmetry matching between band states, which explains the reason for the strong coupling in such heterostructures. This work may enhance the understanding of interlayer interaction and composition mechanisms in van der Waals heterostructures consisting of two-dimensional layered nanomaterials, and may indicate potential reference information for nanoelectronic and optoelectronic applications.

Keywords

strong coupling / vdW heterostructure / DFT calculations / tight-binding Hamiltonian model

Cite this article

Download citation ▾
Xue-Rong Hu, Ji-Ming Zheng, Zhao-Yu Ren. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation. Front. Phys., 2018, 13(2): 137302 https://doi.org/10.1007/s11467-017-0736-0

References

[1]
C. J. Shih, Q. H. Wang, Y. Son, Z. Jin, D. Blankschtein, and M. S. Strano, Tuning on-off current ratio and fieldeffect mobility in a MoS2-graphene heterostructure via Schottky barrier modulation, ACS Nano 8(6), 5790 (2014)
CrossRef ADS Google scholar
[2]
Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode, ACS Nano 8(8), 8292 (2014)
CrossRef ADS Google scholar
[3]
J. Lu, J. Yang, A. Carvalho, H. Liu, Y. Lu, and C. H. Sow, Light–matter interactions in phosphorene, Acc. Chem. Res. 49(9), 1806 (2016)
CrossRef ADS Google scholar
[4]
J. Lu, A. Carvalho, J. Wu, H. Liu, E. S. Tok, A. H. C. Neto, B. Özyilmaz, and C. H. Sow, Enhanced photoresponse from phosphorene–phosphorene-suboxide junction fashioned by focused laser micromachining, Adv. Mater. 28, 4090 (2016)
CrossRef ADS Google scholar
[5]
M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, and T. Mueller, Photovoltaic effect in an electrically tunable van der Waals heterojunction, Nano Lett. 14(8), 4785 (2014)
CrossRef ADS Google scholar
[6]
A. Pakdel, Y. Bando, and D. Golberg, Nano boron nitride flatland, Chem. Soc. Rev. 43(3), 934 (2014)
CrossRef ADS Google scholar
[7]
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
CrossRef ADS Google scholar
[8]
L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)
CrossRef ADS Google scholar
[9]
F. Xia, H. Wang, and Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics, Nat. Commun. 5, 289 (2014)
CrossRef ADS Google scholar
[10]
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)
CrossRef ADS Google scholar
[11]
M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating, Nat. Commun. 5, 4651 (2014)
CrossRef ADS Google scholar
[12]
V. Tran, R. Soklaski, Y. Liang, and L. Yang, Layercontrolled band gap and anisotropic excitons in fewlayer black phosphorus, Phys. Rev. B 89(23), 235319 (2014)
CrossRef ADS Google scholar
[13]
A. S. Rodin, A. Carvalho, and A. H. Castro Neto, Strain-induced gap modification in black phosphorus, Phys. Rev. Lett. 112(17), 176801 (2014)
CrossRef ADS Google scholar
[14]
F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)
CrossRef ADS Google scholar
[15]
R. Ganatra and Q. Zhang, Few-layer MoS2: A promising layered semiconductor, ACS Nano 8(5), 4074 (2014)
CrossRef ADS Google scholar
[16]
J. O. Island, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Environmental instability of fewlayer black phosphorus, 2D Materials 2 (1), 011002 (2015)
[17]
A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)
CrossRef ADS Google scholar
[18]
J. E. Padilha, A. Fazzio, and A. J. da Silva, Van der Waals heterostructure of phosphorene and graphene: Tuning the Schottky barrier and doping by electrostatic gating, Phys. Rev. Lett. 114(6), 066803 (2015)
CrossRef ADS Google scholar
[19]
T. Hu and J. Hong, Anisotropic effective mass, optical property, and enhanced band gap in BN/phosphorene/BN heterostructures, ACS Appl. Mater. Interfaces 7(42), 23489 (2015)
CrossRef ADS Google scholar
[20]
J. Lu, A. Carvalho, W. Jing, H. Liu, E. S. Tok, A. H. C. Neto, B. Özyilmaz, and C. H. Sow, Phosphorene: Enhanced photoresponse from phosphorene-phosphorenesuboxide junction fashioned by focused laser micromachining, Adv. Mater. 28(21), 4164 (2016)
CrossRef ADS Google scholar
[21]
Y. Zhao, H. Wang, H. Huang, Q. Xiao, Y. Xu, Z. Guo, H. Xie, J. Shao, Z. Sun, and W. Han, Surface coordination of black phosphorus for robust air and water stability, Angew. Chem. Int. Ed. 55(16), 5003 (2016)
CrossRef ADS Google scholar
[22]
G. C. Guo, D. Wang, X. L. Wei, Q. Zhang, H. Liu, W. M. Lau, and L. M. Liu, First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries, J. Phys. Chem. Lett. 6(24), 5002 (2015)
CrossRef ADS Google scholar
[23]
J. Dai and X. C. Zeng, Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells, J. Phys. Chem. Lett. 5(7), 1289 (2014)
CrossRef ADS Google scholar
[24]
L. Huang and J. Li, Tunable electronic structure of black phosphorus/blue phosphorus van der Waals p-n heterostructure, Appl. Phys. Lett. 108(8), 083101 (2016)
CrossRef ADS Google scholar
[25]
H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides, Proc. Natl. Acad. Sci. USA 111(17), 6198 (2014)
CrossRef ADS Google scholar
[26]
G. Kresse and J. Furthmüller, Efficiency of ab-initiototal energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef ADS Google scholar
[27]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[28]
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef ADS Google scholar
[29]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef ADS Google scholar
[30]
J. Klimeš, D. R. Bowler, and A. Michaelides, Van der Waals density functionals applied to solids, Phys. Rev. B 83(19), 195131 (2011)
CrossRef ADS Google scholar
[31]
Y. Cai, G. Zhang, and Y. W. Zhang, Electronic properties of phosphorene/graphene and phosphorene/ hexagonal boron nitride heterostructures, J. Phys. Chem. C 119(24), 13929 (2015)
CrossRef ADS Google scholar
[32]
B. Sa, Y. L. Li, J. Qi, R. Ahuja, and Z. Sun, Strain engineering for phosphorene: The potential application as a photocatalyst, J. Phys. Chem. C 118(46), 26560 (2014)
CrossRef ADS Google scholar
[33]
R. Fei and L. Yang, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus, Nano Lett. 14(5), 2884 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(4579 KB)

Accesses

Citations

Detail

Sections
Recommended

/