Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation
Xue-Rong Hu, Ji-Ming Zheng, Zhao-Yu Ren
Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation
Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the heterostructure, and charges transfer from graphene to phosphorene, causing the Fermi level of the heterostructure to shift downward with respect to the Dirac point of graphene. Significantly, strong coupling between two layers is discovered in the band spectrum even though it has a van der Waals heterostructure. A tight-binding Hamiltonian model is used to reveal that the resonance of the Bloch states between the phosphorene and graphene layers in certain K points combines with the symmetry matching between band states, which explains the reason for the strong coupling in such heterostructures. This work may enhance the understanding of interlayer interaction and composition mechanisms in van der Waals heterostructures consisting of two-dimensional layered nanomaterials, and may indicate potential reference information for nanoelectronic and optoelectronic applications.
strong coupling / vdW heterostructure / DFT calculations / tight-binding Hamiltonian model
[1] |
C. J. Shih, Q. H. Wang, Y. Son, Z. Jin, D. Blankschtein, and M. S. Strano, Tuning on-off current ratio and fieldeffect mobility in a MoS2-graphene heterostructure via Schottky barrier modulation, ACS Nano 8(6), 5790 (2014)
CrossRef
ADS
Google scholar
|
[2] |
Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode, ACS Nano 8(8), 8292 (2014)
CrossRef
ADS
Google scholar
|
[3] |
J. Lu, J. Yang, A. Carvalho, H. Liu, Y. Lu, and C. H. Sow, Light–matter interactions in phosphorene, Acc. Chem. Res. 49(9), 1806 (2016)
CrossRef
ADS
Google scholar
|
[4] |
J. Lu, A. Carvalho, J. Wu, H. Liu, E. S. Tok, A. H. C. Neto, B. Özyilmaz, and C. H. Sow, Enhanced photoresponse from phosphorene–phosphorene-suboxide junction fashioned by focused laser micromachining, Adv. Mater. 28, 4090 (2016)
CrossRef
ADS
Google scholar
|
[5] |
M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, and T. Mueller, Photovoltaic effect in an electrically tunable van der Waals heterojunction, Nano Lett. 14(8), 4785 (2014)
CrossRef
ADS
Google scholar
|
[6] |
A. Pakdel, Y. Bando, and D. Golberg, Nano boron nitride flatland, Chem. Soc. Rev. 43(3), 934 (2014)
CrossRef
ADS
Google scholar
|
[7] |
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
CrossRef
ADS
Google scholar
|
[8] |
L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)
CrossRef
ADS
Google scholar
|
[9] |
F. Xia, H. Wang, and Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics, Nat. Commun. 5, 289 (2014)
CrossRef
ADS
Google scholar
|
[10] |
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)
CrossRef
ADS
Google scholar
|
[11] |
M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating, Nat. Commun. 5, 4651 (2014)
CrossRef
ADS
Google scholar
|
[12] |
V. Tran, R. Soklaski, Y. Liang, and L. Yang, Layercontrolled band gap and anisotropic excitons in fewlayer black phosphorus, Phys. Rev. B 89(23), 235319 (2014)
CrossRef
ADS
Google scholar
|
[13] |
A. S. Rodin, A. Carvalho, and A. H. Castro Neto, Strain-induced gap modification in black phosphorus, Phys. Rev. Lett. 112(17), 176801 (2014)
CrossRef
ADS
Google scholar
|
[14] |
F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)
CrossRef
ADS
Google scholar
|
[15] |
R. Ganatra and Q. Zhang, Few-layer MoS2: A promising layered semiconductor, ACS Nano 8(5), 4074 (2014)
CrossRef
ADS
Google scholar
|
[16] |
J. O. Island, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Environmental instability of fewlayer black phosphorus, 2D Materials 2 (1), 011002 (2015)
|
[17] |
A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)
CrossRef
ADS
Google scholar
|
[18] |
J. E. Padilha, A. Fazzio, and A. J. da Silva, Van der Waals heterostructure of phosphorene and graphene: Tuning the Schottky barrier and doping by electrostatic gating, Phys. Rev. Lett. 114(6), 066803 (2015)
CrossRef
ADS
Google scholar
|
[19] |
T. Hu and J. Hong, Anisotropic effective mass, optical property, and enhanced band gap in BN/phosphorene/BN heterostructures, ACS Appl. Mater. Interfaces 7(42), 23489 (2015)
CrossRef
ADS
Google scholar
|
[20] |
J. Lu, A. Carvalho, W. Jing, H. Liu, E. S. Tok, A. H. C. Neto, B. Özyilmaz, and C. H. Sow, Phosphorene: Enhanced photoresponse from phosphorene-phosphorenesuboxide junction fashioned by focused laser micromachining, Adv. Mater. 28(21), 4164 (2016)
CrossRef
ADS
Google scholar
|
[21] |
Y. Zhao, H. Wang, H. Huang, Q. Xiao, Y. Xu, Z. Guo, H. Xie, J. Shao, Z. Sun, and W. Han, Surface coordination of black phosphorus for robust air and water stability, Angew. Chem. Int. Ed. 55(16), 5003 (2016)
CrossRef
ADS
Google scholar
|
[22] |
G. C. Guo, D. Wang, X. L. Wei, Q. Zhang, H. Liu, W. M. Lau, and L. M. Liu, First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries, J. Phys. Chem. Lett. 6(24), 5002 (2015)
CrossRef
ADS
Google scholar
|
[23] |
J. Dai and X. C. Zeng, Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells, J. Phys. Chem. Lett. 5(7), 1289 (2014)
CrossRef
ADS
Google scholar
|
[24] |
L. Huang and J. Li, Tunable electronic structure of black phosphorus/blue phosphorus van der Waals p-n heterostructure, Appl. Phys. Lett. 108(8), 083101 (2016)
CrossRef
ADS
Google scholar
|
[25] |
H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides, Proc. Natl. Acad. Sci. USA 111(17), 6198 (2014)
CrossRef
ADS
Google scholar
|
[26] |
G. Kresse and J. Furthmüller, Efficiency of ab-initiototal energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef
ADS
Google scholar
|
[27] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[28] |
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef
ADS
Google scholar
|
[29] |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef
ADS
Google scholar
|
[30] |
J. Klimeš, D. R. Bowler, and A. Michaelides, Van der Waals density functionals applied to solids, Phys. Rev. B 83(19), 195131 (2011)
CrossRef
ADS
Google scholar
|
[31] |
Y. Cai, G. Zhang, and Y. W. Zhang, Electronic properties of phosphorene/graphene and phosphorene/ hexagonal boron nitride heterostructures, J. Phys. Chem. C 119(24), 13929 (2015)
CrossRef
ADS
Google scholar
|
[32] |
B. Sa, Y. L. Li, J. Qi, R. Ahuja, and Z. Sun, Strain engineering for phosphorene: The potential application as a photocatalyst, J. Phys. Chem. C 118(46), 26560 (2014)
CrossRef
ADS
Google scholar
|
[33] |
R. Fei and L. Yang, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus, Nano Lett. 14(5), 2884 (2014)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |