Breakdown of Landau Fermi liquid theory: Restrictions on the degrees of freedom of quantum electrons
Yue-Hua Su, Han-Tao Lu
Breakdown of Landau Fermi liquid theory: Restrictions on the degrees of freedom of quantum electrons
One challenge in contemporary condensed matter physics is to understand unconventional electronic physics beyond the paradigm of Landau Fermi-liquid theory. Here, we present a perspective that posits that most such examples of unconventional electronic physics stem from restrictions on the degrees of freedom of quantum electrons in Landau Fermi liquids. Since the degrees of freedom are deeply connected to the system’s symmetries and topology, these restrictions can thus be realized by external constraints or by interaction-driven processes via the following mechanisms: (i) symmetry breaking, (ii) new emergent symmetries, and (iii) nontrivial topology. Various examples of unconventional electronic physics beyond the reach of traditional Landau Fermi liquid theory are extensively investigated from this point of view. Our perspective yields basic pathways to study the breakdown of Landau Fermi liquids and also provides a guiding principle in the search for novel electronic systems and devices.
breakdown of the Landau Fermi liquids / degrees of freedom / symmetry / topology
[1] |
J. P. Landau, The theory of a Fermi liquid, Sov. Phys. JETP 30, 1058 (1956)
|
[2] |
J. P. Landau, Oscillations in a Fermi liquid, Sov. Phys. JETP 32, 59 (1957)
|
[3] |
J. P. Landau, On the theory of the Fermi liquid, Sov. Phys. JETP 35, 97 (1958)
|
[4] |
P. Coleman, Introduction to Many Body Physics, Chapter 6, 1st Ed., Cambridge: Cambridge University Press, 2015
CrossRef
ADS
Google scholar
|
[5] |
A. A. Abrikosov, L. P. Gor’kov, and I. Ye. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics, 2nd Ed., Perpamon Press Ltd., 1965
|
[6] |
R. Shankar, Renormalization-group approach to interacting fermions, Rev. Mod. Phys. 66(1), 129 (1994)
CrossRef
ADS
Google scholar
|
[7] |
C. M. Varma, Z. Nussinov, and W. van Saarloos, Singular or non-Fermi liquids, Phys. Rep. 361(5–6), 267 (2002)
CrossRef
ADS
Google scholar
|
[8] |
G. R. Stewart, Non-Fermi-liquid behavior in d- and f electron metals, Rev. Mod. Phys. 73(4), 797 (2001)
CrossRef
ADS
Google scholar
|
[9] |
J. Voit, One-dimensional Fermi liquids, Rep. Prog. Phys. 57, 977 (1994)
|
[10] |
E. Abrahams (Ed.), Lecture Notes in 50 Years of Anderson Localization, 1st Ed., Singapore: World Scientific, 2010
|
[11] |
P. Coleman, Heavy fermions and the Kondo lattice: A 21st century perspective, in: Lecture Notes for Autumn School on Correlated Electrons: Many-Body Physics: From Kondo to Hubbard, arXiv: 1509.05769 (2015)
|
[12] |
B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, From quantum matter to hightemperature superconductivity in copper oxides, Nature 518(7538), 179 (2015)
CrossRef
ADS
Google scholar
|
[13] |
M. R. Norman, Novel superfluids, pp 23–79, arXiv: 1302.3176, 2nd Ed., edited by K. H. Bennemann and J. B. Ketterson, Oxford: Oxford University Press, 2014
|
[14] |
P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, The physics behind high-temperature superconducting cuprates: The “plain vanilla” version of RVB, J. Phys.: Condens. Matter 16(24), R755 (2004)
CrossRef
ADS
Google scholar
|
[15] |
P. A. Lee, N. Nagaosa, and X. G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys. 78(1), 17 (2006)
CrossRef
ADS
Google scholar
|
[16] |
X. H. Chen, P. C. Dai, D. L. Feng, T. Xiang, and F. C. Zhang, Iron based high transition temperature superconductors, Natl. Sci. Rev. 1(3), 371 (2014)
CrossRef
ADS
Google scholar
|
[17] |
G. R. Stewart, Superconductivity in iron compounds, Rev. Mod. Phys. 83(4), 1589 (2011)
CrossRef
ADS
Google scholar
|
[18] |
K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
CrossRef
ADS
Google scholar
|
[19] |
D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48(22), 1559 (1982)
CrossRef
ADS
Google scholar
|
[20] |
F. D. M. Haldane, Luttinger liquid theory of one dimensional quantum fluids (I): properties of the Luttinger model and their extension to the general 1D interacting spin-less Fermi gas, J. Phys. C 14(19), 2585 (1981)
CrossRef
ADS
Google scholar
|
[21] |
R. E. Prange, M. E. Cage, K. Klitzing, S. M. Girvin, A. M. Chang, F. Duncan, M. Haldane, R. B. Laughlin, A. M. M. Pruisken, and D. J. Thouless, The Quantum Hall Effect, 2nd Ed., edited by R. E. Prange and S. M. Girvin, Graduate Texts in Contemporary Physics, New York: Springer, 1990
CrossRef
ADS
Google scholar
|
[22] |
J. K. Jain, Composite Fermions, 1st Ed., Cambridge University Press, 2007
CrossRef
ADS
Google scholar
|
[23] |
L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, 3rd Ed., Course of Theoretical Physics, Vol. 5, Beijing World Publishing Corporation by arrangement with Betterworth-Heinemann, 1999
|
[24] |
K. G. Wilson and J. Kogut, The renormalization group and the e expansion, Phys. Rep. 12(2), 75 (1974)
CrossRef
ADS
Google scholar
|
[25] |
P. A. M. Dirac, The Principles of Quantum Mechanics, 4th Ed., Science Press, 2008
|
[26] |
S. Weinberg, Lectures on Quantum Mechanics, 1st Ed., New York: Cambridge University Press, 2013
|
[27] |
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a two dimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
CrossRef
ADS
Google scholar
|
[28] |
J. E. Avron, D. Osadchy, and R. Seiler, A topological look at the quantum Hall effect, Phys. Today 56(8), 38 (2003)
CrossRef
ADS
Google scholar
|
[29] |
A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B 78(19), 195125 (2008)
CrossRef
ADS
Google scholar
|
[30] |
A. Kitaev, V. Lebedev, and M. Feigel’man, Periodic table for topological insulators and superconductors, AIP Conf. Proc. 1134, 22 (2009)
CrossRef
ADS
Google scholar
|
[31] |
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef
ADS
Google scholar
|
[32] |
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef
ADS
Google scholar
|
[33] |
C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88(3), 035005 (2016)
CrossRef
ADS
Google scholar
|
[34] |
A. Zee, Group Theory in a Nutshell for Physicists, 1st Ed., Princeton: Princeton University Press, 2016
|
[35] |
I. Ia. Pomeranchuk, On the stability of a Fermi liquid, Sov. Phys. JETP 8, 361 (1959)
|
[36] |
C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A. E. Ruckenstein, Phenomenology of the normal state of Cu-O high-temperature superconductors, Phys. Rev. Lett. 63(18), 1996 (1989)
CrossRef
ADS
Google scholar
|
[37] |
A. V. Chubukov, D. Pines, and J. Schmalian, A spin fluctuation model for D-wave superconductivity, arXiv: cond-mat/0201140, 1st Ed., edited by K. H. Bennemann and J. B. Ketterson, Springer-Verlag, 2002
|
[38] |
K. Y. Yang, T. M. Rice, and F. C. Zhang, Phenomenological theory of the pseudogap state, Phys. Rev. B 73(17), 174501 (2006)
CrossRef
ADS
Google scholar
|
[39] |
P. A. Bares and X. G. Wen, Breakdown of the Fermi liquid due to long-range interactions, Phys. Rev. B 48(12), 8636 (1993)
CrossRef
ADS
Google scholar
|
[40] |
P. W. Anderson, Hidden Fermi liquid: The secret of high-Tc cuprates, Phys. Rev. B 78(17), 174505 (2008)
CrossRef
ADS
Google scholar
|
[41] |
K. Limtragool, C. Setty, Z. Leong, and P. W. Phillips, Realizing infrared power-law liquids in the cuprates from unparticle interactions, Phys. Rev. B 94(23), 235121 (2016)
CrossRef
ADS
Google scholar
|
[42] |
M. E. Fisher, Renormalization group theory: Its basis and formulation in statistical physics, Rev. Mod. Phys. 70(2), 653 (1998)
CrossRef
ADS
Google scholar
|
[43] |
S. K. Ma, Modern Theory of Critical Phenomena, 1st Ed., edited by D. Pines, Advanced Book Program, Westview Press,2000
|
[44] |
N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group, 1st Ed., Advanced Book Program, Perseus Books, Reading, Massachusetts, 1992
|
[45] |
M. Suzuki, Phase transition and fractals, Prog. Theor. Phys. 69(1), 65 (1983)
CrossRef
ADS
Google scholar
|
[46] |
H. Kröger, Fractal geometry in quantum mechanics, field theory and spin systems, Phys. Rep. 323(2), 81 (2000)
CrossRef
ADS
Google scholar
|
[47] |
P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109(5), 1492 (1958)
CrossRef
ADS
Google scholar
|
[48] |
A. Lagendijk, B. Tiggelen, and D. S. Wiersma, Fifty years of Anderson localization, Phys. Today 62(8), 24 (2009)
CrossRef
ADS
Google scholar
|
[49] |
E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Scaling theory of localization: Absence of quantum diffusion in two dimensions, Phys. Rev. Lett. 42(10), 673 (1979)
CrossRef
ADS
Google scholar
|
[50] |
N. Mott, The mobility edge since 1967, J. Phys. C 20(21), 3075 (1987)
CrossRef
ADS
Google scholar
|
[51] |
D. Vollhardt and P. Wölfle, Diagrammatic, selfconsistent treatment of the Anderson localization problem in d≤2 dimensions, Phys. Rev. B 22(10), 4666 (1980)
CrossRef
ADS
Google scholar
|
[52] |
D. Vollhardt and P. Wölfle, Scaling equations from a self-consistent theory of Anderson localization, Phys. Rev. Lett. 48(10), 699 (1982)
CrossRef
ADS
Google scholar
|
[53] |
R. Abou-Chacra, D. J. Thouless, and P. W. Anderson, A self-consistent theory of localization, J. Phys. C 6(10), 1734 (1973)
|
[54] |
F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod. Phys. 80(4), 1355 (2008)
CrossRef
ADS
Google scholar
|
[55] |
W. De Roeck, F. Huveneers, M. Müller, and M. Schiulaz, Absence of many-body mobility edges, Phys. Rev. B 93(1), 014203 (2016)
CrossRef
ADS
Google scholar
|
[56] |
X. P. Li, J. H. Pixley, D. L. Deng, S. Ganeshan, and S. Das Sarma, Quantum nonergodicity and fermion localization in a system with a single-particle mobility edge, Phys. Rev. B 93(18), 184204 (2016)
CrossRef
ADS
Google scholar
|
[57] |
N. D. Mermin, The topological theory of defects in ordered media, Rev. Mod. Phys. 51(3), 591 (1979)
CrossRef
ADS
Google scholar
|
[58] |
J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6(7), 1181 (1973)
CrossRef
ADS
Google scholar
|
[59] |
J. E. Avron, R. Seiler, and B. Simon, Homotopy and quantization in condensed matter physics, Phys. Rev. Lett. 51(1), 51 (1983)
CrossRef
ADS
Google scholar
|
[60] |
R. B. Laughlin, Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett. 50(18), 1395 (1983)
CrossRef
ADS
Google scholar
|
[61] |
J. K. Jain, Composite-fermion approach for the fractional quantum Hall effect, Phys. Rev. Lett. 63(2), 199 (1989)
CrossRef
ADS
Google scholar
|
[62] |
S. C. Zhang, T. H. Hansson, and S. Kivelson, Effective field-theory model for the fractional quantum Hall effect, Phys. Rev. Lett. 62(1), 82 (1989)
CrossRef
ADS
Google scholar
|
[63] |
C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Non-abelian anyons and topological quantum computation, Rev. Mod. Phys. 80(3), 1083 (2008)
CrossRef
ADS
Google scholar
|
[64] |
E. Fradkin, S. A. Kivelson, M. J. Lawler, J. P. Eisenstein, and A. P. Mackenzie, Nematic Fermi fluids in condensed matter physics, Annu. Rev. Condens. Matter Phys. 1(1), 153 (2010)
CrossRef
ADS
Google scholar
|
[65] |
V. Oganesyan, S. A. Kivelson, and E. Fradkin, Quantum theory of a nematic Fermi fluid, Phys. Rev. B 64(19), 195109 (2001)
CrossRef
ADS
Google scholar
|
[66] |
H. Watanabe and A. Vishwanath, Criterion for stability of Goldstone modes and Fermi liquid behavior in a metal with broken symmetry, Proc. Natl. Acad. Sci. USA 111(46), 16314 (2014)
CrossRef
ADS
Google scholar
|
[67] |
M. J. Lawler, D. G. Barci, V. Fernández, E. Fradkin, and L. Oxman, Non-perturbative behavior of the quantum phase transition to a nematic Fermi fluid, Phys. Rev. B 73(8), 085101 (2006)
CrossRef
ADS
Google scholar
|
[68] |
M. Sigrist and K. Ueda, Phenomenological theory of unconventional superconductivity, Rev. Mod. Phys. 63(2), 239 (1991)
CrossRef
ADS
Google scholar
|
[69] |
P. W. Anderson, Random-phase approximation in the theory of superconductivity, Phys. Rev. 112(6), 1900 (1958)
CrossRef
ADS
Google scholar
|
[70] |
P. B. Littlewood and C. M. Varma, Gauge-invariant theory of the dynamical interaction of charge density waves and superconductivity, Phys. Rev. Lett. 47(11), 811 (1981)
CrossRef
ADS
Google scholar
|
[71] |
P. B. Littlewood and C. M. Varma, Amplitude collective modes in superconductors and their coupling to charge density waves, Phys. Rev. B 26(9), 4883 (1982)
CrossRef
ADS
Google scholar
|
[72] |
M. C. Gutzwiller, Effect of correlation on the ferromagnetism of transition metals, Phys. Rev. Lett. 10(5), 159 (1963)
CrossRef
ADS
Google scholar
|
[73] |
P. W. Anderson, The resonating valence bond state in La2CuO4 and superconductivity, Science 235(4793), 1196 (1987)
CrossRef
ADS
Google scholar
|
[74] |
D. Vollhardt, Normal 3He: An almost localized Fermi liquid, Rev. Mod. Phys. 56(1), 99 (1984)
CrossRef
ADS
Google scholar
|
[75] |
B. Edegger, V. N. Muthukumar, and C. Gros, Gutzwiller-RVB theory of high-temperature superconductivity: Results from renormalized mean-field theory and variational Monte Carlo calculations, Adv. Phys. 56(6), 927 (2007)
CrossRef
ADS
Google scholar
|
[76] |
H. Y. Yang, F. Yang, Y. J. Jiang, and T. Li, On the origin of the tunnelling asymmetry in the cuprate superconductors: A variational perspective, J. Phys.: Condens. Matter 19(1), 016217 (2007)
CrossRef
ADS
Google scholar
|
[77] |
S. Yunoki, Single-particle anomalous excitations of Gutzwiller-projected BCS superconductors and Bogoliubov quasiparticle characteristics, Phys. Rev. B 74(18), 180504 (2006)
CrossRef
ADS
Google scholar
|
[78] |
S. Lederer, Y. Schattner, E. Berg, and S. A. Kivelson, Enhancement of superconductivity near a nematic quantum critical point, Phys. Rev. Lett. 114(9), 097001 (2015)
CrossRef
ADS
Google scholar
|
[79] |
A. M. Tsvelik, Quantum Field Theory in Condensed Matter Physics, 1st Ed., Cambridge: Cambridge University Press, 1995
|
[80] |
P. W. Anderson and P. A. Casey, Transport anomalies of the strange metal: Resolution by hidden Fermi liquid theory, Phys. Rev. B 80(9), 094508 (2009)
CrossRef
ADS
Google scholar
|
[81] |
J. K. Jain and P. W. Anderson, Beyond the Fermi liquid paradigm: Hidden Fermi liquids, Proc. Natl. Acad. Sci. USA 106(23), 9131 (2009)
CrossRef
ADS
Google scholar
|
[82] |
P. Coleman, Introduction to Many Body Physics, Chapter 16 and 17, 1st Ed., Cambridge: Cambridge University Press, 2015
CrossRef
ADS
Google scholar
|
[83] |
P. W. Anderson, A poor man’s derivation of scaling laws for the Kondo problem, J. Phys. C 3(12), 2436 (1970)
CrossRef
ADS
Google scholar
|
[84] |
Q. M. Si, S. Rabello, K. Ingersent, and J. L. Smith, Local fluctuations in quantum critical metals, Phys. Rev. B 68(11), 115103 (2003)
CrossRef
ADS
Google scholar
|
[85] |
P. Nozières, A “Fermi-liquid” description of the Kondo problem at low temperatures, J. Low Temp. Phys. 17(1–2), 31 (1974)
CrossRef
ADS
Google scholar
|
[86] |
Y. F. Yang and D. Pines, Emergent states in heavyelectron materials, Proc. Natl. Acad. Sci. USA 109(45), E3060 (2012)
CrossRef
ADS
Google scholar
|
[87] |
Y. F. Yang and D. Pines, Quantum critical behavior in heavy electron materials, Proc. Natl. Acad. Sci. USA 111(23), 8398 (2014)
CrossRef
ADS
Google scholar
|
[88] |
H. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Mod. Phys. 79(3), 1015 (2007)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |