Breakdown of Landau Fermi liquid theory: Restrictions on the degrees of freedom of quantum electrons

Yue-Hua Su , Han-Tao Lu

Front. Phys. ›› 2018, Vol. 13 ›› Issue (2) : 137103

PDF (253KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (2) : 137103 DOI: 10.1007/s11467-017-0734-2
REVIEW ARTICLE

Breakdown of Landau Fermi liquid theory: Restrictions on the degrees of freedom of quantum electrons

Author information +
History +
PDF (253KB)

Abstract

One challenge in contemporary condensed matter physics is to understand unconventional electronic physics beyond the paradigm of Landau Fermi-liquid theory. Here, we present a perspective that posits that most such examples of unconventional electronic physics stem from restrictions on the degrees of freedom of quantum electrons in Landau Fermi liquids. Since the degrees of freedom are deeply connected to the system’s symmetries and topology, these restrictions can thus be realized by external constraints or by interaction-driven processes via the following mechanisms: (i) symmetry breaking, (ii) new emergent symmetries, and (iii) nontrivial topology. Various examples of unconventional electronic physics beyond the reach of traditional Landau Fermi liquid theory are extensively investigated from this point of view. Our perspective yields basic pathways to study the breakdown of Landau Fermi liquids and also provides a guiding principle in the search for novel electronic systems and devices.

Keywords

breakdown of the Landau Fermi liquids / degrees of freedom / symmetry / topology

Cite this article

Download citation ▾
Yue-Hua Su, Han-Tao Lu. Breakdown of Landau Fermi liquid theory: Restrictions on the degrees of freedom of quantum electrons. Front. Phys., 2018, 13(2): 137103 DOI:10.1007/s11467-017-0734-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. P. Landau, The theory of a Fermi liquid, Sov. Phys. JETP 30, 1058 (1956)

[2]

J. P. Landau, Oscillations in a Fermi liquid, Sov. Phys. JETP 32, 59 (1957)

[3]

J. P. Landau, On the theory of the Fermi liquid, Sov. Phys. JETP 35, 97 (1958)

[4]

P. Coleman, Introduction to Many Body Physics, Chapter 6, 1st Ed., Cambridge: Cambridge University Press, 2015

[5]

A. A. Abrikosov, L. P. Gor’kov, and I. Ye. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics, 2nd Ed., Perpamon Press Ltd., 1965

[6]

R. Shankar, Renormalization-group approach to interacting fermions, Rev. Mod. Phys. 66(1), 129 (1994)

[7]

C. M. Varma, Z. Nussinov, and W. van Saarloos, Singular or non-Fermi liquids, Phys. Rep. 361(5–6), 267 (2002)

[8]

G. R. Stewart, Non-Fermi-liquid behavior in d- and f electron metals, Rev. Mod. Phys. 73(4), 797 (2001)

[9]

J. Voit, One-dimensional Fermi liquids, Rep. Prog. Phys. 57, 977 (1994)

[10]

E. Abrahams (Ed.), Lecture Notes in 50 Years of Anderson Localization, 1st Ed., Singapore: World Scientific, 2010

[11]

P. Coleman, Heavy fermions and the Kondo lattice: A 21st century perspective, in: Lecture Notes for Autumn School on Correlated Electrons: Many-Body Physics: From Kondo to Hubbard, arXiv: 1509.05769 (2015)

[12]

B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, From quantum matter to hightemperature superconductivity in copper oxides, Nature 518(7538), 179 (2015)

[13]

M. R. Norman, Novel superfluids, pp 23–79, arXiv: 1302.3176, 2nd Ed., edited by K. H. Bennemann and J. B. Ketterson, Oxford: Oxford University Press, 2014

[14]

P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, The physics behind high-temperature superconducting cuprates: The “plain vanilla” version of RVB, J. Phys.: Condens. Matter 16(24), R755 (2004)

[15]

P. A. Lee, N. Nagaosa, and X. G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys. 78(1), 17 (2006)

[16]

X. H. Chen, P. C. Dai, D. L. Feng, T. Xiang, and F. C. Zhang, Iron based high transition temperature superconductors, Natl. Sci. Rev. 1(3), 371 (2014)

[17]

G. R. Stewart, Superconductivity in iron compounds, Rev. Mod. Phys. 83(4), 1589 (2011)

[18]

K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)

[19]

D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48(22), 1559 (1982)

[20]

F. D. M. Haldane, Luttinger liquid theory of one dimensional quantum fluids (I): properties of the Luttinger model and their extension to the general 1D interacting spin-less Fermi gas, J. Phys. C 14(19), 2585 (1981)

[21]

R. E. Prange, M. E. Cage, K. Klitzing, S. M. Girvin, A. M. Chang, F. Duncan, M. Haldane, R. B. Laughlin, A. M. M. Pruisken, and D. J. Thouless, The Quantum Hall Effect, 2nd Ed., edited by R. E. Prange and S. M. Girvin, Graduate Texts in Contemporary Physics, New York: Springer, 1990

[22]

J. K. Jain, Composite Fermions, 1st Ed., Cambridge University Press, 2007

[23]

L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, 3rd Ed., Course of Theoretical Physics, Vol. 5, Beijing World Publishing Corporation by arrangement with Betterworth-Heinemann, 1999

[24]

K. G. Wilson and J. Kogut, The renormalization group and the e expansion, Phys. Rep. 12(2), 75 (1974)

[25]

P. A. M. Dirac, The Principles of Quantum Mechanics, 4th Ed., Science Press, 2008

[26]

S. Weinberg, Lectures on Quantum Mechanics, 1st Ed., New York: Cambridge University Press, 2013

[27]

D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a two dimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)

[28]

J. E. Avron, D. Osadchy, and R. Seiler, A topological look at the quantum Hall effect, Phys. Today 56(8), 38 (2003)

[29]

A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B 78(19), 195125 (2008)

[30]

A. Kitaev, V. Lebedev, and M. Feigel’man, Periodic table for topological insulators and superconductors, AIP Conf. Proc. 1134, 22 (2009)

[31]

M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)

[32]

X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)

[33]

C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88(3), 035005 (2016)

[34]

A. Zee, Group Theory in a Nutshell for Physicists, 1st Ed., Princeton: Princeton University Press, 2016

[35]

I. Ia. Pomeranchuk, On the stability of a Fermi liquid, Sov. Phys. JETP 8, 361 (1959)

[36]

C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A. E. Ruckenstein, Phenomenology of the normal state of Cu-O high-temperature superconductors, Phys. Rev. Lett. 63(18), 1996 (1989)

[37]

A. V. Chubukov, D. Pines, and J. Schmalian, A spin fluctuation model for D-wave superconductivity, arXiv: cond-mat/0201140, 1st Ed., edited by K. H. Bennemann and J. B. Ketterson, Springer-Verlag, 2002

[38]

K. Y. Yang, T. M. Rice, and F. C. Zhang, Phenomenological theory of the pseudogap state, Phys. Rev. B 73(17), 174501 (2006)

[39]

P. A. Bares and X. G. Wen, Breakdown of the Fermi liquid due to long-range interactions, Phys. Rev. B 48(12), 8636 (1993)

[40]

P. W. Anderson, Hidden Fermi liquid: The secret of high-Tc cuprates, Phys. Rev. B 78(17), 174505 (2008)

[41]

K. Limtragool, C. Setty, Z. Leong, and P. W. Phillips, Realizing infrared power-law liquids in the cuprates from unparticle interactions, Phys. Rev. B 94(23), 235121 (2016)

[42]

M. E. Fisher, Renormalization group theory: Its basis and formulation in statistical physics, Rev. Mod. Phys. 70(2), 653 (1998)

[43]

S. K. Ma, Modern Theory of Critical Phenomena, 1st Ed., edited by D. Pines, Advanced Book Program, Westview Press,2000

[44]

N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group, 1st Ed., Advanced Book Program, Perseus Books, Reading, Massachusetts, 1992

[45]

M. Suzuki, Phase transition and fractals, Prog. Theor. Phys. 69(1), 65 (1983)

[46]

H. Kröger, Fractal geometry in quantum mechanics, field theory and spin systems, Phys. Rep. 323(2), 81 (2000)

[47]

P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109(5), 1492 (1958)

[48]

A. Lagendijk, B. Tiggelen, and D. S. Wiersma, Fifty years of Anderson localization, Phys. Today 62(8), 24 (2009)

[49]

E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Scaling theory of localization: Absence of quantum diffusion in two dimensions, Phys. Rev. Lett. 42(10), 673 (1979)

[50]

N. Mott, The mobility edge since 1967, J. Phys. C 20(21), 3075 (1987)

[51]

D. Vollhardt and P. Wölfle, Diagrammatic, selfconsistent treatment of the Anderson localization problem in d≤2 dimensions, Phys. Rev. B 22(10), 4666 (1980)

[52]

D. Vollhardt and P. Wölfle, Scaling equations from a self-consistent theory of Anderson localization, Phys. Rev. Lett. 48(10), 699 (1982)

[53]

R. Abou-Chacra, D. J. Thouless, and P. W. Anderson, A self-consistent theory of localization, J. Phys. C 6(10), 1734 (1973)

[54]

F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod. Phys. 80(4), 1355 (2008)

[55]

W. De Roeck, F. Huveneers, M. Müller, and M. Schiulaz, Absence of many-body mobility edges, Phys. Rev. B 93(1), 014203 (2016)

[56]

X. P. Li, J. H. Pixley, D. L. Deng, S. Ganeshan, and S. Das Sarma, Quantum nonergodicity and fermion localization in a system with a single-particle mobility edge, Phys. Rev. B 93(18), 184204 (2016)

[57]

N. D. Mermin, The topological theory of defects in ordered media, Rev. Mod. Phys. 51(3), 591 (1979)

[58]

J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6(7), 1181 (1973)

[59]

J. E. Avron, R. Seiler, and B. Simon, Homotopy and quantization in condensed matter physics, Phys. Rev. Lett. 51(1), 51 (1983)

[60]

R. B. Laughlin, Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett. 50(18), 1395 (1983)

[61]

J. K. Jain, Composite-fermion approach for the fractional quantum Hall effect, Phys. Rev. Lett. 63(2), 199 (1989)

[62]

S. C. Zhang, T. H. Hansson, and S. Kivelson, Effective field-theory model for the fractional quantum Hall effect, Phys. Rev. Lett. 62(1), 82 (1989)

[63]

C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Non-abelian anyons and topological quantum computation, Rev. Mod. Phys. 80(3), 1083 (2008)

[64]

E. Fradkin, S. A. Kivelson, M. J. Lawler, J. P. Eisenstein, and A. P. Mackenzie, Nematic Fermi fluids in condensed matter physics, Annu. Rev. Condens. Matter Phys. 1(1), 153 (2010)

[65]

V. Oganesyan, S. A. Kivelson, and E. Fradkin, Quantum theory of a nematic Fermi fluid, Phys. Rev. B 64(19), 195109 (2001)

[66]

H. Watanabe and A. Vishwanath, Criterion for stability of Goldstone modes and Fermi liquid behavior in a metal with broken symmetry, Proc. Natl. Acad. Sci. USA 111(46), 16314 (2014)

[67]

M. J. Lawler, D. G. Barci, V. Fernández, E. Fradkin, and L. Oxman, Non-perturbative behavior of the quantum phase transition to a nematic Fermi fluid, Phys. Rev. B 73(8), 085101 (2006)

[68]

M. Sigrist and K. Ueda, Phenomenological theory of unconventional superconductivity, Rev. Mod. Phys. 63(2), 239 (1991)

[69]

P. W. Anderson, Random-phase approximation in the theory of superconductivity, Phys. Rev. 112(6), 1900 (1958)

[70]

P. B. Littlewood and C. M. Varma, Gauge-invariant theory of the dynamical interaction of charge density waves and superconductivity, Phys. Rev. Lett. 47(11), 811 (1981)

[71]

P. B. Littlewood and C. M. Varma, Amplitude collective modes in superconductors and their coupling to charge density waves, Phys. Rev. B 26(9), 4883 (1982)

[72]

M. C. Gutzwiller, Effect of correlation on the ferromagnetism of transition metals, Phys. Rev. Lett. 10(5), 159 (1963)

[73]

P. W. Anderson, The resonating valence bond state in La2CuO4 and superconductivity, Science 235(4793), 1196 (1987)

[74]

D. Vollhardt, Normal 3He: An almost localized Fermi liquid, Rev. Mod. Phys. 56(1), 99 (1984)

[75]

B. Edegger, V. N. Muthukumar, and C. Gros, Gutzwiller-RVB theory of high-temperature superconductivity: Results from renormalized mean-field theory and variational Monte Carlo calculations, Adv. Phys. 56(6), 927 (2007)

[76]

H. Y. Yang, F. Yang, Y. J. Jiang, and T. Li, On the origin of the tunnelling asymmetry in the cuprate superconductors: A variational perspective, J. Phys.: Condens. Matter 19(1), 016217 (2007)

[77]

S. Yunoki, Single-particle anomalous excitations of Gutzwiller-projected BCS superconductors and Bogoliubov quasiparticle characteristics, Phys. Rev. B 74(18), 180504 (2006)

[78]

S. Lederer, Y. Schattner, E. Berg, and S. A. Kivelson, Enhancement of superconductivity near a nematic quantum critical point, Phys. Rev. Lett. 114(9), 097001 (2015)

[79]

A. M. Tsvelik, Quantum Field Theory in Condensed Matter Physics, 1st Ed., Cambridge: Cambridge University Press, 1995

[80]

P. W. Anderson and P. A. Casey, Transport anomalies of the strange metal: Resolution by hidden Fermi liquid theory, Phys. Rev. B 80(9), 094508 (2009)

[81]

J. K. Jain and P. W. Anderson, Beyond the Fermi liquid paradigm: Hidden Fermi liquids, Proc. Natl. Acad. Sci. USA 106(23), 9131 (2009)

[82]

P. Coleman, Introduction to Many Body Physics, Chapter 16 and 17, 1st Ed., Cambridge: Cambridge University Press, 2015

[83]

P. W. Anderson, A poor man’s derivation of scaling laws for the Kondo problem, J. Phys. C 3(12), 2436 (1970)

[84]

Q. M. Si, S. Rabello, K. Ingersent, and J. L. Smith, Local fluctuations in quantum critical metals, Phys. Rev. B 68(11), 115103 (2003)

[85]

P. Nozières, A “Fermi-liquid” description of the Kondo problem at low temperatures, J. Low Temp. Phys. 17(1–2), 31 (1974)

[86]

Y. F. Yang and D. Pines, Emergent states in heavyelectron materials, Proc. Natl. Acad. Sci. USA 109(45), E3060 (2012)

[87]

Y. F. Yang and D. Pines, Quantum critical behavior in heavy electron materials, Proc. Natl. Acad. Sci. USA 111(23), 8398 (2014)

[88]

H. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Mod. Phys. 79(3), 1015 (2007)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (253KB)

810

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/