Breakdown of Landau Fermi liquid theory: Restrictions on the degrees of freedom of quantum electrons

Yue-Hua Su, Han-Tao Lu

PDF(253 KB)
PDF(253 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (2) : 137103. DOI: 10.1007/s11467-017-0734-2
REVIEW ARTICLE
REVIEW ARTICLE

Breakdown of Landau Fermi liquid theory: Restrictions on the degrees of freedom of quantum electrons

Author information +
History +

Abstract

One challenge in contemporary condensed matter physics is to understand unconventional electronic physics beyond the paradigm of Landau Fermi-liquid theory. Here, we present a perspective that posits that most such examples of unconventional electronic physics stem from restrictions on the degrees of freedom of quantum electrons in Landau Fermi liquids. Since the degrees of freedom are deeply connected to the system’s symmetries and topology, these restrictions can thus be realized by external constraints or by interaction-driven processes via the following mechanisms: (i) symmetry breaking, (ii) new emergent symmetries, and (iii) nontrivial topology. Various examples of unconventional electronic physics beyond the reach of traditional Landau Fermi liquid theory are extensively investigated from this point of view. Our perspective yields basic pathways to study the breakdown of Landau Fermi liquids and also provides a guiding principle in the search for novel electronic systems and devices.

Keywords

breakdown of the Landau Fermi liquids / degrees of freedom / symmetry / topology

Cite this article

Download citation ▾
Yue-Hua Su, Han-Tao Lu. Breakdown of Landau Fermi liquid theory: Restrictions on the degrees of freedom of quantum electrons. Front. Phys., 2018, 13(2): 137103 https://doi.org/10.1007/s11467-017-0734-2

References

[1]
J. P. Landau, The theory of a Fermi liquid, Sov. Phys. JETP 30, 1058 (1956)
[2]
J. P. Landau, Oscillations in a Fermi liquid, Sov. Phys. JETP 32, 59 (1957)
[3]
J. P. Landau, On the theory of the Fermi liquid, Sov. Phys. JETP 35, 97 (1958)
[4]
P. Coleman, Introduction to Many Body Physics, Chapter 6, 1st Ed., Cambridge: Cambridge University Press, 2015
CrossRef ADS Google scholar
[5]
A. A. Abrikosov, L. P. Gor’kov, and I. Ye. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics, 2nd Ed., Perpamon Press Ltd., 1965
[6]
R. Shankar, Renormalization-group approach to interacting fermions, Rev. Mod. Phys. 66(1), 129 (1994)
CrossRef ADS Google scholar
[7]
C. M. Varma, Z. Nussinov, and W. van Saarloos, Singular or non-Fermi liquids, Phys. Rep. 361(5–6), 267 (2002)
CrossRef ADS Google scholar
[8]
G. R. Stewart, Non-Fermi-liquid behavior in d- and f electron metals, Rev. Mod. Phys. 73(4), 797 (2001)
CrossRef ADS Google scholar
[9]
J. Voit, One-dimensional Fermi liquids, Rep. Prog. Phys. 57, 977 (1994)
[10]
E. Abrahams (Ed.), Lecture Notes in 50 Years of Anderson Localization, 1st Ed., Singapore: World Scientific, 2010
[11]
P. Coleman, Heavy fermions and the Kondo lattice: A 21st century perspective, in: Lecture Notes for Autumn School on Correlated Electrons: Many-Body Physics: From Kondo to Hubbard, arXiv: 1509.05769 (2015)
[12]
B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, From quantum matter to hightemperature superconductivity in copper oxides, Nature 518(7538), 179 (2015)
CrossRef ADS Google scholar
[13]
M. R. Norman, Novel superfluids, pp 23–79, arXiv: 1302.3176, 2nd Ed., edited by K. H. Bennemann and J. B. Ketterson, Oxford: Oxford University Press, 2014
[14]
P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, The physics behind high-temperature superconducting cuprates: The “plain vanilla” version of RVB, J. Phys.: Condens. Matter 16(24), R755 (2004)
CrossRef ADS Google scholar
[15]
P. A. Lee, N. Nagaosa, and X. G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys. 78(1), 17 (2006)
CrossRef ADS Google scholar
[16]
X. H. Chen, P. C. Dai, D. L. Feng, T. Xiang, and F. C. Zhang, Iron based high transition temperature superconductors, Natl. Sci. Rev. 1(3), 371 (2014)
CrossRef ADS Google scholar
[17]
G. R. Stewart, Superconductivity in iron compounds, Rev. Mod. Phys. 83(4), 1589 (2011)
CrossRef ADS Google scholar
[18]
K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
CrossRef ADS Google scholar
[19]
D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48(22), 1559 (1982)
CrossRef ADS Google scholar
[20]
F. D. M. Haldane, Luttinger liquid theory of one dimensional quantum fluids (I): properties of the Luttinger model and their extension to the general 1D interacting spin-less Fermi gas, J. Phys. C 14(19), 2585 (1981)
CrossRef ADS Google scholar
[21]
R. E. Prange, M. E. Cage, K. Klitzing, S. M. Girvin, A. M. Chang, F. Duncan, M. Haldane, R. B. Laughlin, A. M. M. Pruisken, and D. J. Thouless, The Quantum Hall Effect, 2nd Ed., edited by R. E. Prange and S. M. Girvin, Graduate Texts in Contemporary Physics, New York: Springer, 1990
CrossRef ADS Google scholar
[22]
J. K. Jain, Composite Fermions, 1st Ed., Cambridge University Press, 2007
CrossRef ADS Google scholar
[23]
L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, 3rd Ed., Course of Theoretical Physics, Vol. 5, Beijing World Publishing Corporation by arrangement with Betterworth-Heinemann, 1999
[24]
K. G. Wilson and J. Kogut, The renormalization group and the e expansion, Phys. Rep. 12(2), 75 (1974)
CrossRef ADS Google scholar
[25]
P. A. M. Dirac, The Principles of Quantum Mechanics, 4th Ed., Science Press, 2008
[26]
S. Weinberg, Lectures on Quantum Mechanics, 1st Ed., New York: Cambridge University Press, 2013
[27]
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a two dimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
CrossRef ADS Google scholar
[28]
J. E. Avron, D. Osadchy, and R. Seiler, A topological look at the quantum Hall effect, Phys. Today 56(8), 38 (2003)
CrossRef ADS Google scholar
[29]
A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B 78(19), 195125 (2008)
CrossRef ADS Google scholar
[30]
A. Kitaev, V. Lebedev, and M. Feigel’man, Periodic table for topological insulators and superconductors, AIP Conf. Proc. 1134, 22 (2009)
CrossRef ADS Google scholar
[31]
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef ADS Google scholar
[32]
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef ADS Google scholar
[33]
C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88(3), 035005 (2016)
CrossRef ADS Google scholar
[34]
A. Zee, Group Theory in a Nutshell for Physicists, 1st Ed., Princeton: Princeton University Press, 2016
[35]
I. Ia. Pomeranchuk, On the stability of a Fermi liquid, Sov. Phys. JETP 8, 361 (1959)
[36]
C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A. E. Ruckenstein, Phenomenology of the normal state of Cu-O high-temperature superconductors, Phys. Rev. Lett. 63(18), 1996 (1989)
CrossRef ADS Google scholar
[37]
A. V. Chubukov, D. Pines, and J. Schmalian, A spin fluctuation model for D-wave superconductivity, arXiv: cond-mat/0201140, 1st Ed., edited by K. H. Bennemann and J. B. Ketterson, Springer-Verlag, 2002
[38]
K. Y. Yang, T. M. Rice, and F. C. Zhang, Phenomenological theory of the pseudogap state, Phys. Rev. B 73(17), 174501 (2006)
CrossRef ADS Google scholar
[39]
P. A. Bares and X. G. Wen, Breakdown of the Fermi liquid due to long-range interactions, Phys. Rev. B 48(12), 8636 (1993)
CrossRef ADS Google scholar
[40]
P. W. Anderson, Hidden Fermi liquid: The secret of high-Tc cuprates, Phys. Rev. B 78(17), 174505 (2008)
CrossRef ADS Google scholar
[41]
K. Limtragool, C. Setty, Z. Leong, and P. W. Phillips, Realizing infrared power-law liquids in the cuprates from unparticle interactions, Phys. Rev. B 94(23), 235121 (2016)
CrossRef ADS Google scholar
[42]
M. E. Fisher, Renormalization group theory: Its basis and formulation in statistical physics, Rev. Mod. Phys. 70(2), 653 (1998)
CrossRef ADS Google scholar
[43]
S. K. Ma, Modern Theory of Critical Phenomena, 1st Ed., edited by D. Pines, Advanced Book Program, Westview Press,2000
[44]
N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group, 1st Ed., Advanced Book Program, Perseus Books, Reading, Massachusetts, 1992
[45]
M. Suzuki, Phase transition and fractals, Prog. Theor. Phys. 69(1), 65 (1983)
CrossRef ADS Google scholar
[46]
H. Kröger, Fractal geometry in quantum mechanics, field theory and spin systems, Phys. Rep. 323(2), 81 (2000)
CrossRef ADS Google scholar
[47]
P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109(5), 1492 (1958)
CrossRef ADS Google scholar
[48]
A. Lagendijk, B. Tiggelen, and D. S. Wiersma, Fifty years of Anderson localization, Phys. Today 62(8), 24 (2009)
CrossRef ADS Google scholar
[49]
E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Scaling theory of localization: Absence of quantum diffusion in two dimensions, Phys. Rev. Lett. 42(10), 673 (1979)
CrossRef ADS Google scholar
[50]
N. Mott, The mobility edge since 1967, J. Phys. C 20(21), 3075 (1987)
CrossRef ADS Google scholar
[51]
D. Vollhardt and P. Wölfle, Diagrammatic, selfconsistent treatment of the Anderson localization problem in d≤2 dimensions, Phys. Rev. B 22(10), 4666 (1980)
CrossRef ADS Google scholar
[52]
D. Vollhardt and P. Wölfle, Scaling equations from a self-consistent theory of Anderson localization, Phys. Rev. Lett. 48(10), 699 (1982)
CrossRef ADS Google scholar
[53]
R. Abou-Chacra, D. J. Thouless, and P. W. Anderson, A self-consistent theory of localization, J. Phys. C 6(10), 1734 (1973)
[54]
F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod. Phys. 80(4), 1355 (2008)
CrossRef ADS Google scholar
[55]
W. De Roeck, F. Huveneers, M. Müller, and M. Schiulaz, Absence of many-body mobility edges, Phys. Rev. B 93(1), 014203 (2016)
CrossRef ADS Google scholar
[56]
X. P. Li, J. H. Pixley, D. L. Deng, S. Ganeshan, and S. Das Sarma, Quantum nonergodicity and fermion localization in a system with a single-particle mobility edge, Phys. Rev. B 93(18), 184204 (2016)
CrossRef ADS Google scholar
[57]
N. D. Mermin, The topological theory of defects in ordered media, Rev. Mod. Phys. 51(3), 591 (1979)
CrossRef ADS Google scholar
[58]
J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6(7), 1181 (1973)
CrossRef ADS Google scholar
[59]
J. E. Avron, R. Seiler, and B. Simon, Homotopy and quantization in condensed matter physics, Phys. Rev. Lett. 51(1), 51 (1983)
CrossRef ADS Google scholar
[60]
R. B. Laughlin, Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett. 50(18), 1395 (1983)
CrossRef ADS Google scholar
[61]
J. K. Jain, Composite-fermion approach for the fractional quantum Hall effect, Phys. Rev. Lett. 63(2), 199 (1989)
CrossRef ADS Google scholar
[62]
S. C. Zhang, T. H. Hansson, and S. Kivelson, Effective field-theory model for the fractional quantum Hall effect, Phys. Rev. Lett. 62(1), 82 (1989)
CrossRef ADS Google scholar
[63]
C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Non-abelian anyons and topological quantum computation, Rev. Mod. Phys. 80(3), 1083 (2008)
CrossRef ADS Google scholar
[64]
E. Fradkin, S. A. Kivelson, M. J. Lawler, J. P. Eisenstein, and A. P. Mackenzie, Nematic Fermi fluids in condensed matter physics, Annu. Rev. Condens. Matter Phys. 1(1), 153 (2010)
CrossRef ADS Google scholar
[65]
V. Oganesyan, S. A. Kivelson, and E. Fradkin, Quantum theory of a nematic Fermi fluid, Phys. Rev. B 64(19), 195109 (2001)
CrossRef ADS Google scholar
[66]
H. Watanabe and A. Vishwanath, Criterion for stability of Goldstone modes and Fermi liquid behavior in a metal with broken symmetry, Proc. Natl. Acad. Sci. USA 111(46), 16314 (2014)
CrossRef ADS Google scholar
[67]
M. J. Lawler, D. G. Barci, V. Fernández, E. Fradkin, and L. Oxman, Non-perturbative behavior of the quantum phase transition to a nematic Fermi fluid, Phys. Rev. B 73(8), 085101 (2006)
CrossRef ADS Google scholar
[68]
M. Sigrist and K. Ueda, Phenomenological theory of unconventional superconductivity, Rev. Mod. Phys. 63(2), 239 (1991)
CrossRef ADS Google scholar
[69]
P. W. Anderson, Random-phase approximation in the theory of superconductivity, Phys. Rev. 112(6), 1900 (1958)
CrossRef ADS Google scholar
[70]
P. B. Littlewood and C. M. Varma, Gauge-invariant theory of the dynamical interaction of charge density waves and superconductivity, Phys. Rev. Lett. 47(11), 811 (1981)
CrossRef ADS Google scholar
[71]
P. B. Littlewood and C. M. Varma, Amplitude collective modes in superconductors and their coupling to charge density waves, Phys. Rev. B 26(9), 4883 (1982)
CrossRef ADS Google scholar
[72]
M. C. Gutzwiller, Effect of correlation on the ferromagnetism of transition metals, Phys. Rev. Lett. 10(5), 159 (1963)
CrossRef ADS Google scholar
[73]
P. W. Anderson, The resonating valence bond state in La2CuO4 and superconductivity, Science 235(4793), 1196 (1987)
CrossRef ADS Google scholar
[74]
D. Vollhardt, Normal 3He: An almost localized Fermi liquid, Rev. Mod. Phys. 56(1), 99 (1984)
CrossRef ADS Google scholar
[75]
B. Edegger, V. N. Muthukumar, and C. Gros, Gutzwiller-RVB theory of high-temperature superconductivity: Results from renormalized mean-field theory and variational Monte Carlo calculations, Adv. Phys. 56(6), 927 (2007)
CrossRef ADS Google scholar
[76]
H. Y. Yang, F. Yang, Y. J. Jiang, and T. Li, On the origin of the tunnelling asymmetry in the cuprate superconductors: A variational perspective, J. Phys.: Condens. Matter 19(1), 016217 (2007)
CrossRef ADS Google scholar
[77]
S. Yunoki, Single-particle anomalous excitations of Gutzwiller-projected BCS superconductors and Bogoliubov quasiparticle characteristics, Phys. Rev. B 74(18), 180504 (2006)
CrossRef ADS Google scholar
[78]
S. Lederer, Y. Schattner, E. Berg, and S. A. Kivelson, Enhancement of superconductivity near a nematic quantum critical point, Phys. Rev. Lett. 114(9), 097001 (2015)
CrossRef ADS Google scholar
[79]
A. M. Tsvelik, Quantum Field Theory in Condensed Matter Physics, 1st Ed., Cambridge: Cambridge University Press, 1995
[80]
P. W. Anderson and P. A. Casey, Transport anomalies of the strange metal: Resolution by hidden Fermi liquid theory, Phys. Rev. B 80(9), 094508 (2009)
CrossRef ADS Google scholar
[81]
J. K. Jain and P. W. Anderson, Beyond the Fermi liquid paradigm: Hidden Fermi liquids, Proc. Natl. Acad. Sci. USA 106(23), 9131 (2009)
CrossRef ADS Google scholar
[82]
P. Coleman, Introduction to Many Body Physics, Chapter 16 and 17, 1st Ed., Cambridge: Cambridge University Press, 2015
CrossRef ADS Google scholar
[83]
P. W. Anderson, A poor man’s derivation of scaling laws for the Kondo problem, J. Phys. C 3(12), 2436 (1970)
CrossRef ADS Google scholar
[84]
Q. M. Si, S. Rabello, K. Ingersent, and J. L. Smith, Local fluctuations in quantum critical metals, Phys. Rev. B 68(11), 115103 (2003)
CrossRef ADS Google scholar
[85]
P. Nozières, A “Fermi-liquid” description of the Kondo problem at low temperatures, J. Low Temp. Phys. 17(1–2), 31 (1974)
CrossRef ADS Google scholar
[86]
Y. F. Yang and D. Pines, Emergent states in heavyelectron materials, Proc. Natl. Acad. Sci. USA 109(45), E3060 (2012)
CrossRef ADS Google scholar
[87]
Y. F. Yang and D. Pines, Quantum critical behavior in heavy electron materials, Proc. Natl. Acad. Sci. USA 111(23), 8398 (2014)
CrossRef ADS Google scholar
[88]
H. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Mod. Phys. 79(3), 1015 (2007)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(253 KB)

Accesses

Citations

Detail

Sections
Recommended

/