Stationary and moving solitons in spin–orbit-coupled spin-1 Bose–Einstein condensates

Yu-E Li, Ju-Kui Xue

PDF(481 KB)
PDF(481 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (2) : 130307. DOI: 10.1007/s11467-017-0732-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Stationary and moving solitons in spin–orbit-coupled spin-1 Bose–Einstein condensates

Author information +
History +

Abstract

We investigate the matter-wave solitons in a spin–orbit-coupled spin-1 Bose–Einstein condensate using a multiscale perturbation method. Beginning with the one-dimensional spin–orbit-coupled threecomponent Gross–Pitaevskii equations, we derive a single nonlinear Schrödinger equation, which allows determination of the analytical soliton solutions of the system. Stationary and moving solitons in the system are derived. In particular, a parameter space for different existing soliton types is provided. It is shown that there exist only dark or bright solitons when the spin–orbit coupling is weak, with the solitons depending on the atomic interactions. However, when the spin–orbit coupling is strong, both dark and bright solitons exist, being determined by the Raman coupling. Our analytical solutions are confirmed by direct numerical simulations.

Keywords

spin–orbit coupling / Bose–Einstein condensate / soliton / perturbation method

Cite this article

Download citation ▾
Yu-E Li, Ju-Kui Xue. Stationary and moving solitons in spin–orbit-coupled spin-1 Bose–Einstein condensates. Front. Phys., 2018, 13(2): 130307 https://doi.org/10.1007/s11467-017-0732-4

References

[1]
M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, Vortices in a Bose–Einstein condensate, Phys. Rev. Lett. 83(13), 2498 (1999)
CrossRef ADS Google scholar
[2]
J. Billy, V. Josse, A. Bernard, B. Hambrecht, P. Lugan, D. Clement, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, Direct observation of Anderson localization of matter waves in a controlled disorder, Nature 453(7197), 891 (2008)
CrossRef ADS Google scholar
[3]
G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Anderson localization of a non-interacting Bose– Einstein condensate, Nature 453(7197), 895 (2008)
CrossRef ADS Google scholar
[4]
S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, Dark solitons in Bose–Einstein condensates, Phys. Rev. Lett. 83(25), 5198 (1999)
CrossRef ADS Google scholar
[5]
U. Al Khawaja, H. T. C. Stoof, R. G. Hulet, K. E. Strecker, and G. B. Partridge, Bright soliton trains of trapped Bose–Einstein condensates, Phys. Rev. Lett. 89(20), 200404 (2002)
CrossRef ADS Google scholar
[6]
G. Theocharis, D. J. Frantzeskakis, P. G. Kevrekidis, B. A. Malomed, and Y. S. Kivshar, Ring dark solitons and vortex necklaces in Bose–Einstein condensates, Phys. Rev. Lett. 90(12), 120403 (2003)
CrossRef ADS Google scholar
[7]
B. Wu, J. Liu, and Q. Niu, Controlled generation of dark solitons with phase imprinting, Phys. Rev. Lett. 88(3), 034101 (2002)
CrossRef ADS Google scholar
[8]
Y. Wu and L. Deng, Ultraslow optical solitons in a cold four-state medium, Phys. Rev. Lett. 93(14), 143904 (2004)
CrossRef ADS Google scholar
[9]
J. K. Xue, Interaction of ring dark solitons with ring impurities in Bose–Einstein condensates, J. Phys. At. Mol. Opt. Phys. 38(6), 671 (2005)
CrossRef ADS Google scholar
[10]
T. Taniuti and K. Nishihara, Nonlinear Waves, Pitman Advanced Publishing Program, 1983
[11]
A. C. Newell, Solitons in Mathematics and Physics, Society for Industrial and Applied Mathematics, 1987
[12]
S. Stellmer, C. Becker, P. Soltan-Panahi, E.M. Richter, S. Dörscher, M. Baumert, J. Kronjäger, K. Bongs, and K. Sengstock, Collisions of dark solitons in elongated Bose–Einstein condensates, Phys. Rev. Lett. 101(12), 120406 (2008)
CrossRef ADS Google scholar
[13]
H. G. Luo and W. M. Liu, Matter-wave solitons in heteronuclear atomic Bose–Einstein condensates with synchronously controllable interactions and potentials, Phys. Rev. A 84(5), 053631 (2011)
CrossRef ADS Google scholar
[14]
T. Busch and J. R. Anglin, Dark-bright solitons in inhomogeneous Bose–Einstein condensates, Phys. Rev. Lett. 87(1), 010401 (2001)
CrossRef ADS Google scholar
[15]
C. Hamner, J. J. Chang, P. Engels, and M. A. Hoefer, Generation of dark-bright soliton trains in superfluid– superfluid counterflow, Phys. Rev. Lett. 106(6), 065302 (2011)
CrossRef ADS Google scholar
[16]
K. Kasamatsu and M. Tsubota, Multiple domain formation induced by modulation instability in twocomponent Bose–Einstein condensates, Phys. Rev. Lett. 93(10), 100402 (2004)
CrossRef ADS Google scholar
[17]
P. G. Kevrekidis, D. J. Frantzeskakis, B. A. Malomed, and R. Carretero-González, Families of matter-waves in two-component Bose–Einstein condensates, Eur. Phys. J. D 28(2), 181 (2004)
CrossRef ADS Google scholar
[18]
T. W. Neely, E. C. Samson, A. S. Bradley, M. J. Davis, and B. P. Anderson, Observation of vortex dipoles in an oblate Bose–Einstein condensate, Phys. Rev. Lett. 104(16), 160401 (2010)
CrossRef ADS Google scholar
[19]
D. V. Freilich, D. M. Bianchi, A. M. Kaufman, T. K. Langin, and D. S. Hall, Real-time dynamics of single vortex lines and vortex dipoles in a Bose–Einstein condensate, Science 329(5996), 1182 (2010)
CrossRef ADS Google scholar
[20]
S. Middelkamp, P. J. Torres, P. G. Kevrekidis, D. J. Frantzeskakis, R. Carretero-González, P. Schmelcher, D. V. Freilich, and D. S. Hall, Guiding-center dynamics of vortex dipoles in Bose–Einstein condensates, Phys. Rev. A 84(1), 011605(R) (2011)
[21]
S. Wüster, T. E. Argue, and C. M. Savage, Numerical study of the stability of skyrmions in Bose–Einstein condensates, Phys. Rev. A 72(4), 043616 (2005)
CrossRef ADS Google scholar
[22]
T. Kawakami, T. Mizushima, M. Nitta, and K. Machida, Stable skyrmions in SU(2) gauged Bose– Einstein condensates, Phys. Rev. Lett. 109(1), 015301 (2012)
CrossRef ADS Google scholar
[23]
Y. J. Lin, K. Jimenez-Garcia, and I. B. Spielman, Spin–orbit-coupled Bose–Einstein condensates, Nature 471(7336), 83 (2011)
CrossRef ADS Google scholar
[24]
V. Galitski and I. B. Spielman, Spin–orbit coupling in quantum gases, Nature 494(7435), 49 (2013)
CrossRef ADS Google scholar
[25]
X. O. Xu and J. H. Han, Emergence of chiral magnetism in spinor Bose–Einstein condensates with Rashba coupling, Phys. Rev. Lett. 108(18), 185301 (2012)
CrossRef ADS Google scholar
[26]
J. Radić, T. A. Sedrakyan, I. B. Spielman, and V. Galitski, Vortices in spin–orbit-coupled Bose–Einstein condensates, Phys. Rev. A 84(6), 063604 (2011)
CrossRef ADS Google scholar
[27]
X. F. Zhou, J. Zhou, and C. J. Wu, Vortex structures of rotating spin–orbit-coupled Bose–Einstein condensates, Phys. Rev. A 84(6), 063624 (2011)
CrossRef ADS Google scholar
[28]
C. Wang, C. Gao, C. M. Jian, and H. Zhai, Spin–orbit coupled spinor Bose–Einstein condensates, Phys. Rev. Lett. 105(16), 160403 (2010)
CrossRef ADS Google scholar
[29]
T. L. Ho and S. Zhang, Bose–Einstein condensates with spin–orbit interaction, Phys. Rev. Lett. 107(15), 150403 (2011)
CrossRef ADS Google scholar
[30]
T. Congy, A. M. Kamchatnov, and N. Pavloff, Nonlinear waves in coherently coupled Bose–Einstein condensates, Phys. Rev. A 93(4), 043613 (2016)
CrossRef ADS Google scholar
[31]
L. Salasnich and B. A. Malomed, Localized modes in dense repulsive and attractive Bose–Einstein condensates with spin–orbit and Rabi couplings, Phys. Rev. A 87(6), 063625 (2013)
CrossRef ADS Google scholar
[32]
V. Achilleos, D. J. Frantzeskakis, P. G. Kevrekidis, and D. E. Pelinovsky, Matter-wave bright solitons in spin– orbit coupled Bose–Einstein condensates, Phys. Rev. Lett. 110(26), 264101 (2013)
CrossRef ADS Google scholar
[33]
V. Achilleos, D. J. Frantzeskakis, P. G. Kevrekidis, P. Schmelcher, and J. Stockhofe, Positive and negative mass solitons in spin–orbit coupled Bose–Einstein condensates, Rom. Rep. Phys. 67(1), 235 (2015)
[34]
Y. V. Kartashov, V. V. Konotop, and F. Kh. Abdullaev, Gap solitons in a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. Lett. 111(6), 060402 (2013)
CrossRef ADS Google scholar
[35]
G. X. Huang, V. A. Makarov, and M. G. Velarde, Twodimensional solitons in Bose–Einstein condensates with a disk-shaped trap, Phys. Rev. A 67(2), 023604 (2003)
CrossRef ADS Google scholar
[36]
S. Sinha, R. Nath, and L. Santos, Trapped twodimensional condensates with synthetic spin–orbit coupling, Phys. Rev. Lett. 107(27), 270401 (2011)
CrossRef ADS Google scholar
[37]
H. Sakaguchi, B. Li, and B. A. Malomed, Creation of two-dimensional composite solitons in spin–orbitcoupled self-attractive Bose–Einstein condensates in free space, Phys. Rev. E 89(3), 032920 (2014)
CrossRef ADS Google scholar
[38]
V. E. Lobanov, Y. V. Kartashov, and V. V. Konotop, Fundamental, multipole, and half-vortex gap solitons in spin–orbit coupled Bose–Einstein condensates, Phys. Rev. Lett. 112(18), 180403 (2014)
CrossRef ADS Google scholar
[39]
Y. C. Zhang, Z. W. Zhou, B. A. Malomed, and H. Pu, Stable solitons in three dimensional free space without the ground state: Self-trapped Bose–Einstein condensates with spin–orbit coupling, Phys. Rev. Lett. 115(25), 253902 (2015)
CrossRef ADS Google scholar
[40]
D. L. Campbell, R. M. Price, A. Putra, A. Valdés-Curiel, D. Trypogeorgos, and I. B. Spielman, Magnetic phases of spin-1 spin–orbit-coupled Bose gases, Nat. Commun. 7, 10897 (2016)
CrossRef ADS Google scholar
[41]
L. Chen, H. Pu, and Y. Zhang, Spin–orbit angular momentum coupling in a spin-1 Bose–Einstein condensate, Phys. Rev. A 93(1), 013629 (2016)
CrossRef ADS Google scholar
[42]
S. Gautam and S. K. Adhikari, Phase separation in a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. A 90(4), 043619 (2014)
CrossRef ADS Google scholar
[43]
G. I. Martone, F. V. Pepe, P. Facchi, S. Pascazio, and S. Stringari, Tricriticalities and quantum phases in spin–orbit-coupled spin-1 Bose gases, Phys. Rev. Lett. 117(12), 125301 (2016)
CrossRef ADS Google scholar
[44]
Y. K. Liu and S. J. Yang, Exact solitons and manifold mixing dynamics in the spin–orbit coupled spinor condensates, Europhys. Lett. 108(3), 30004 (2014)
CrossRef ADS Google scholar
[45]
S. Gautam and S. K. Adhikari, Mobile vector soliton in a spin–orbit coupled spin-1 condensate, Laser Phys. Lett. 12(4), 045501 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(481 KB)

Accesses

Citations

Detail

Sections
Recommended

/