A versatile electrostatic trap with open optical access
Sheng-Qiang Li(李胜强), Jian-Ping Yin (印建平)
A versatile electrostatic trap with open optical access
A versatile electrostatic trap with open optical access for cold polar molecules in weak-field-seeking state is proposed in this paper. The trap is composed of a pair of disk electrodes and a hexapole. With the help of a finite element software, the spatial distribution of the electrostatic field is calculated. The results indicate that a three-dimensional closed electrostatic trap is formed. Taking ND3 molecules as an example, the dynamic process of loading and trapping is simulated. The results show that when the velocity of the molecular beam is 10 m/s and the loading time is 0.9964 ms, the maximum loading efficiency reaches 94.25% and the temperature of the trapped molecules reaches about 30.3 mK. A single well can be split into two wells, which is of significant importance to the precision measurement and interference of matter waves. This scheme, in addition, can be further miniaturized to construct one-dimensional, two-dimensional, and three-dimensional spatial electrostatic lattices.
atomic and molecular physics / electrostatic trap / cold polar molecules / finite element analysis
[1] |
J. J. Hudson, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, Measurement of the electron electric dipole moment using YbF molecules, Phys. Rev. Lett. 89(2), 023003 (2002)
CrossRef
ADS
Google scholar
|
[2] |
J. Veldhoven, J. Küpper, H. L. Bethlem, B. Sartakov, A. J. A. Roij, and G. Meijer, Decelerated molecular beams for high-resolution spectroscopy, Eur. Phys. J. D 31(2), 337 (2004)
CrossRef
ADS
Google scholar
|
[3] |
E. R. Hudson, H. J. Lewandowski, B. C. Sawyer, and J. Ye, Cold molecule spectroscopy for constraining the evolution of the fine structure constant, Phys. Rev. Lett. 96(14), 143004 (2006)
CrossRef
ADS
Google scholar
|
[4] |
J. J. Gilijamse, S. Hoekstra, S. Y. T. van de Meerakker, G. C. Groenenboom, and G. Meijer, Near-threshold inelastic collisions using molecular beams with a tunable velocity, Science 313(5793), 1617 (2006)
CrossRef
ADS
Google scholar
|
[5] |
S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules, Phys. Rev. Lett. 100(4), 043203 (2008)
CrossRef
ADS
Google scholar
|
[6] |
B. C. Sawyer, B. K. Stuhl, M. Yeo, T. V. Tscherbul, M. T. Hummon, Y. Xia, J. Klos, D. Patterson, J. M. Doyle, and J. Ye, Cold heteromolecular dipolar collisions, Phys. Chem. Chem. Phys. 13(42), 19059 (2011)
CrossRef
ADS
Google scholar
|
[7] |
L. P. Parazzoli, N. Fitch, D. S. Lobser, and H. J. Lewandowski, High-energy-resolution molecular beams for cold collision studies, New J. Phys. 11(5), 055031 (2009)
CrossRef
ADS
Google scholar
|
[8] |
D. DeMille, Quantum computation with trapped polar molecules, Phys. Rev. Lett. 88(6), 067901 (2002)
CrossRef
ADS
Google scholar
|
[9] |
T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, Two-dimensional trapping of dipolar molecules in time-varying electric fields, Phys. Rev. Lett. 92(22), 223001 (2004)
CrossRef
ADS
Google scholar
|
[10] |
Y. Xia, Y. L. Yin, H. B. Chen, L. Z. Deng, and J. P. Yin, Electrostatic surface guiding for cold polar molecules: Experimental demonstration, Phys. Rev. Lett. 100(4), 043003 (2008)
CrossRef
ADS
Google scholar
|
[11] |
L. Z. Deng, Y. Liang, Z. X. Gu, S. Y. Hou, S. Q. Li, Y. Xia, and J. P. Yin, Experimental demonstration of a controllable electrostatic molecular beam splitter, Phys. Rev. Lett. 106(14), 140401 (2011)
CrossRef
ADS
Google scholar
|
[12] |
S. D. S. Gordon and A. Osterwalder, 3D-printed beam splitter for polar neutral molecules, Phys. Rev. Appl. 7(4), 044022 (2017)
CrossRef
ADS
Google scholar
|
[13] |
H. L. Bethlem, G. Berden, and G. Meijer, Decelerating neutral dipolar molecules, Phys. Rev. Lett. 83(8), 1558 (1999)
CrossRef
ADS
Google scholar
|
[14] |
M. Quintero-Pérez, P. Jansen, T. E. Wall, J. E. van den Berg, S. Hoekstra, and H. L. Bethlem, Static trapping of polar molecules in a traveling wave decelerator, Phys. Rev. Lett. 110(13), 133003 (2013)
CrossRef
ADS
Google scholar
|
[15] |
S. Y. Hou, S. Q. Li, L. Z. Deng, and J. P. Yin, Dependences of slowing results on both decelerator parameters and the new operating mode: Taking ND3 molecules as an example, J. Phys. At. Mol. Opt. Phys. 46(4), 045301 (2013)
CrossRef
ADS
Google scholar
|
[16] |
F. M. H. Crompvoets, H. L. Bethlem, R. T. Jongma, and G. Meijer, A prototype storage ring for neutral molecules, Nature 411(6834), 174 (2001)
CrossRef
ADS
Google scholar
|
[17] |
P. C. Zieger, S. Y. T. van de Meerakker, C. E. Heiner, H. L. Bethlem, A. J. A. van Roij, and G. Meijer, Multiple packets of neutral molecules revolving for over a mile, Phys. Rev. Lett. 105(17), 173001 (2010)
CrossRef
ADS
Google scholar
|
[18] |
S. Q. Li, L. Xu, L. Z. Deng, and J. P. Yin, Controllable electrostatic surface storage ring with opened optical access for cold polar molecules on a chip, J. Opt. Soc. Am. B 31(1), 110 (2014)
CrossRef
ADS
Google scholar
|
[19] |
S. J. Wark and G. I. Opat, An electrostatic mirror for neutral polar molecules, J. Phys. At. Mol. Opt. Phys. 25(20), 4229 (1992)
CrossRef
ADS
Google scholar
|
[20] |
H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. van Roij, and G. Meijer, Electrostatic trapping of ammonia molecules, Nature 406(6795), 491 (2000)
CrossRef
ADS
Google scholar
|
[21] |
T. Rieger, T. Junglen, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, Continuous loading of an electrostatic trap for polar molecules, Phys. Rev. Lett. 95(17), 173002 (2005)
CrossRef
ADS
Google scholar
|
[22] |
S. A. Meek, H. Conrad, and G. Meijer, Trapping molecules on a chip, Science 324(5935), 1699 (2009)
CrossRef
ADS
Google scholar
|
[23] |
Z. X. Wang, Z. X. Gu, Y. Xia, X. Ji, and J. P. Yin, Optically accessible electrostatic trap for cold polar molecules, J. Opt. Soc. Am. B 30(9), 2348 (2013)
CrossRef
ADS
Google scholar
|
[24] |
M. Schnell, P. Lutzow, J. van Veldhoven, H. L. Bethlem, J. Kupper, B. Friedrich, M. Schleier-Smith, H. Haak, and G. Meijer, A linear AC trap for polar molecules in their ground state, J. Phys. Chem. A 111(31), 7411 (2007)
CrossRef
ADS
Google scholar
|
[25] |
Z. X. Wang, Z. X. Gu, L. Z. Deng, and J. P. Yin, Cooling and trapping polar molecules in an electrostatic trap, Chin. Phys. B 24(5), 053701 (2015)
CrossRef
ADS
Google scholar
|
[26] |
W. J. Mullin and F. Laloe, Interference effects in potential wells, Phys. Rev. A 91(5), 053629 (2015)
CrossRef
ADS
Google scholar
|
[27] |
W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hansch, Trapped-atom interferometer in a magnetic microtrap, Phys. Rev. A 64(6), 063607 (2001)
CrossRef
ADS
Google scholar
|
[28] |
S. J. Kim, H. Yu, S. T. Gang, D. Z. Anderson, and J. B. Kim, Controllable asymmetric double well and ring potential on an atom chip, Phys. Rev. A 93(3), 033612 (2016)
CrossRef
ADS
Google scholar
|
[29] |
P. R. Brooks, Reactions of oriented molecules, Science 193(4247), 11 (1976)
CrossRef
ADS
Google scholar
|
[30] |
M. Brouard, D. H. Parker, and S. Y. T. van de Meerakker, Taming molecular collisions using electric and magnetic fields, Chem. Soc. Rev. 43(21), 7279 (2014)
CrossRef
ADS
Google scholar
|
[31] |
L. J. LeBlanc, A. B. Bardon, J. McKeever, M. H. T. Extavour, D. Jervis, J. H. Thywissen, F. Piazza, and A. Smerzi, Dynamics of a tunable superfluid junction, Phys. Rev. Lett. 106(2), 025302 (2011)
CrossRef
ADS
Google scholar
|
[32] |
S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, The a.c. and d.c. Josephson effects in a Bose–Einstein condensate, Nature 449(7162), 579 (2007)
CrossRef
ADS
Google scholar
|
[33] |
S. Y. T. van de Meerakker, H. L. Bethlem, N. Vanhaecke, and G. Meijer, Manipulation and control of molecular beams, Chem. Rev. 112(9), 4828 (2012)
CrossRef
ADS
Google scholar
|
[34] |
L. Fusina and G. D. Lonardo, Inversion-rotation spectrum and spectroscopic parameters of 14ND3 in the ground state, J. Mol. Spectrosc. 112(1), 211 (1985)
CrossRef
ADS
Google scholar
|
[35] |
G. D. Lonardo and A. Trombetti, Dipole moment of the v2= 1 state of ND3 by saturation laser stark spectroscopy, Chem. Phys. Lett. 84(2), 327 (1981)
CrossRef
ADS
Google scholar
|
[36] |
G. Raithel, G. Birkl, A. Kastberg, W. D. Phillips, and S. L. Rolston, Cooling and localization dynamics in optical lattices, Phys. Rev. Lett. 78(4), 630 (1997)
CrossRef
ADS
Google scholar
|
[37] |
A. Hemmerich, M. Weidemuller, T. Esslinger, C. Zimmermann, and T. Hansch, Trapping atoms in a dark optical lattice, Phys. Rev. Lett. 75(1), 37 (1995)
CrossRef
ADS
Google scholar
|
[38] |
M. C. Fischer, K. W. Madison, Q. Niu, and M. G. Raizen, Observation of Rabi oscillations between Bloch bands in an optical potential, Phys. Rev. A 58, R2648(R) (1998)
|
[39] |
M. B. Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, Bloch oscillations of atoms in an optical potential, Phys. Rev. Lett. 76, 4508 (1996)
CrossRef
ADS
Google scholar
|
[40] |
C. Jurczak, B. Desruelle, K. Sengstock, J. -Y. Courtois, C. I. Westbrook, and A. Aspect, Atomic transport in an optical lattice: An investigation through polarizationselective intensity correlations, Phys. Rev. Lett. 77, 1727 (1996)
CrossRef
ADS
Google scholar
|
[41] |
S. K. Dutta, B. K. Teo, and G. Raithel, Tunneling dynamics and gauge potentials in optical lattices,Phys. Rev. Lett. 83(10), 1934 (1999)
CrossRef
ADS
Google scholar
|
[42] |
M. Weidemuller, A. Hemmerich, A. Gorlitz, T. Esslinger, and T. W. Hansch, Bragg diffraction in an atomic lattice bound by light, Phys. Rev. Lett. 75(25), 4583 (1995)
CrossRef
ADS
Google scholar
|
[43] |
J. K. Pachos and P. L. Knight, Quantum computation with a one-dimensional optical lattice, Phys. Rev. Lett. 91(10), 107902 (2003)
CrossRef
ADS
Google scholar
|
[44] |
J. P. Yin, W. J. Gao, N. C. Liu, J. J. Hu, and Y. Z. Wang, Magnetic guide and trap for cold neutral atoms with current-carrying wires and conductors, J. Chin. Chem. Soc. (Taipei) 48(3), 555 (2001)
CrossRef
ADS
Google scholar
|
[45] |
J. P. Yin, W. J. Gao, J. J. Hu, and Y. Q. Wang, Magnetic surface microtraps for realizing an array of alkali atomic Bose–Einstein condensates or Bose clusters, Opt. Commun. 206(1–3), 99 (2007)
|
[46] |
J. P. Yin, W. J. Gao, J. J. Hu, and N. C. Liu, Atomic magnetic lattices and their applications, Chin. Phys. Lett. 19(3), 327 (2002)
CrossRef
ADS
Google scholar
|
[47] |
J. P. Yin, W. J. Gao, and J. J. Hu, Arrays of microscopic magnetic traps for cold atoms and their applications in atom optics, Chin. Phys. 11(5), 472 (2002)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |