A versatile electrostatic trap with open optical access

Sheng-Qiang Li(李胜强), Jian-Ping Yin (印建平)

PDF(3206 KB)
PDF(3206 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (2) : 133701. DOI: 10.1007/s11467-017-0727-1
RESEARCH ARTICLE
RESEARCH ARTICLE

A versatile electrostatic trap with open optical access

Author information +
History +

Abstract

A versatile electrostatic trap with open optical access for cold polar molecules in weak-field-seeking state is proposed in this paper. The trap is composed of a pair of disk electrodes and a hexapole. With the help of a finite element software, the spatial distribution of the electrostatic field is calculated. The results indicate that a three-dimensional closed electrostatic trap is formed. Taking ND3 molecules as an example, the dynamic process of loading and trapping is simulated. The results show that when the velocity of the molecular beam is 10 m/s and the loading time is 0.9964 ms, the maximum loading efficiency reaches 94.25% and the temperature of the trapped molecules reaches about 30.3 mK. A single well can be split into two wells, which is of significant importance to the precision measurement and interference of matter waves. This scheme, in addition, can be further miniaturized to construct one-dimensional, two-dimensional, and three-dimensional spatial electrostatic lattices.

Keywords

atomic and molecular physics / electrostatic trap / cold polar molecules / finite element analysis

Cite this article

Download citation ▾
Sheng-Qiang Li(李胜强), Jian-Ping Yin (印建平). A versatile electrostatic trap with open optical access. Front. Phys., 2018, 13(2): 133701 https://doi.org/10.1007/s11467-017-0727-1

References

[1]
J. J. Hudson, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, Measurement of the electron electric dipole moment using YbF molecules, Phys. Rev. Lett. 89(2), 023003 (2002)
CrossRef ADS Google scholar
[2]
J. Veldhoven, J. Küpper, H. L. Bethlem, B. Sartakov, A. J. A. Roij, and G. Meijer, Decelerated molecular beams for high-resolution spectroscopy, Eur. Phys. J. D 31(2), 337 (2004)
CrossRef ADS Google scholar
[3]
E. R. Hudson, H. J. Lewandowski, B. C. Sawyer, and J. Ye, Cold molecule spectroscopy for constraining the evolution of the fine structure constant, Phys. Rev. Lett. 96(14), 143004 (2006)
CrossRef ADS Google scholar
[4]
J. J. Gilijamse, S. Hoekstra, S. Y. T. van de Meerakker, G. C. Groenenboom, and G. Meijer, Near-threshold inelastic collisions using molecular beams with a tunable velocity, Science 313(5793), 1617 (2006)
CrossRef ADS Google scholar
[5]
S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules, Phys. Rev. Lett. 100(4), 043203 (2008)
CrossRef ADS Google scholar
[6]
B. C. Sawyer, B. K. Stuhl, M. Yeo, T. V. Tscherbul, M. T. Hummon, Y. Xia, J. Klos, D. Patterson, J. M. Doyle, and J. Ye, Cold heteromolecular dipolar collisions, Phys. Chem. Chem. Phys. 13(42), 19059 (2011)
CrossRef ADS Google scholar
[7]
L. P. Parazzoli, N. Fitch, D. S. Lobser, and H. J. Lewandowski, High-energy-resolution molecular beams for cold collision studies, New J. Phys. 11(5), 055031 (2009)
CrossRef ADS Google scholar
[8]
D. DeMille, Quantum computation with trapped polar molecules, Phys. Rev. Lett. 88(6), 067901 (2002)
CrossRef ADS Google scholar
[9]
T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, Two-dimensional trapping of dipolar molecules in time-varying electric fields, Phys. Rev. Lett. 92(22), 223001 (2004)
CrossRef ADS Google scholar
[10]
Y. Xia, Y. L. Yin, H. B. Chen, L. Z. Deng, and J. P. Yin, Electrostatic surface guiding for cold polar molecules: Experimental demonstration, Phys. Rev. Lett. 100(4), 043003 (2008)
CrossRef ADS Google scholar
[11]
L. Z. Deng, Y. Liang, Z. X. Gu, S. Y. Hou, S. Q. Li, Y. Xia, and J. P. Yin, Experimental demonstration of a controllable electrostatic molecular beam splitter, Phys. Rev. Lett. 106(14), 140401 (2011)
CrossRef ADS Google scholar
[12]
S. D. S. Gordon and A. Osterwalder, 3D-printed beam splitter for polar neutral molecules, Phys. Rev. Appl. 7(4), 044022 (2017)
CrossRef ADS Google scholar
[13]
H. L. Bethlem, G. Berden, and G. Meijer, Decelerating neutral dipolar molecules, Phys. Rev. Lett. 83(8), 1558 (1999)
CrossRef ADS Google scholar
[14]
M. Quintero-Pérez, P. Jansen, T. E. Wall, J. E. van den Berg, S. Hoekstra, and H. L. Bethlem, Static trapping of polar molecules in a traveling wave decelerator, Phys. Rev. Lett. 110(13), 133003 (2013)
CrossRef ADS Google scholar
[15]
S. Y. Hou, S. Q. Li, L. Z. Deng, and J. P. Yin, Dependences of slowing results on both decelerator parameters and the new operating mode: Taking ND3 molecules as an example, J. Phys. At. Mol. Opt. Phys. 46(4), 045301 (2013)
CrossRef ADS Google scholar
[16]
F. M. H. Crompvoets, H. L. Bethlem, R. T. Jongma, and G. Meijer, A prototype storage ring for neutral molecules, Nature 411(6834), 174 (2001)
CrossRef ADS Google scholar
[17]
P. C. Zieger, S. Y. T. van de Meerakker, C. E. Heiner, H. L. Bethlem, A. J. A. van Roij, and G. Meijer, Multiple packets of neutral molecules revolving for over a mile, Phys. Rev. Lett. 105(17), 173001 (2010)
CrossRef ADS Google scholar
[18]
S. Q. Li, L. Xu, L. Z. Deng, and J. P. Yin, Controllable electrostatic surface storage ring with opened optical access for cold polar molecules on a chip, J. Opt. Soc. Am. B 31(1), 110 (2014)
CrossRef ADS Google scholar
[19]
S. J. Wark and G. I. Opat, An electrostatic mirror for neutral polar molecules, J. Phys. At. Mol. Opt. Phys. 25(20), 4229 (1992)
CrossRef ADS Google scholar
[20]
H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. van Roij, and G. Meijer, Electrostatic trapping of ammonia molecules, Nature 406(6795), 491 (2000)
CrossRef ADS Google scholar
[21]
T. Rieger, T. Junglen, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, Continuous loading of an electrostatic trap for polar molecules, Phys. Rev. Lett. 95(17), 173002 (2005)
CrossRef ADS Google scholar
[22]
S. A. Meek, H. Conrad, and G. Meijer, Trapping molecules on a chip, Science 324(5935), 1699 (2009)
CrossRef ADS Google scholar
[23]
Z. X. Wang, Z. X. Gu, Y. Xia, X. Ji, and J. P. Yin, Optically accessible electrostatic trap for cold polar molecules, J. Opt. Soc. Am. B 30(9), 2348 (2013)
CrossRef ADS Google scholar
[24]
M. Schnell, P. Lutzow, J. van Veldhoven, H. L. Bethlem, J. Kupper, B. Friedrich, M. Schleier-Smith, H. Haak, and G. Meijer, A linear AC trap for polar molecules in their ground state, J. Phys. Chem. A 111(31), 7411 (2007)
CrossRef ADS Google scholar
[25]
Z. X. Wang, Z. X. Gu, L. Z. Deng, and J. P. Yin, Cooling and trapping polar molecules in an electrostatic trap, Chin. Phys. B 24(5), 053701 (2015)
CrossRef ADS Google scholar
[26]
W. J. Mullin and F. Laloe, Interference effects in potential wells, Phys. Rev. A 91(5), 053629 (2015)
CrossRef ADS Google scholar
[27]
W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hansch, Trapped-atom interferometer in a magnetic microtrap, Phys. Rev. A 64(6), 063607 (2001)
CrossRef ADS Google scholar
[28]
S. J. Kim, H. Yu, S. T. Gang, D. Z. Anderson, and J. B. Kim, Controllable asymmetric double well and ring potential on an atom chip, Phys. Rev. A 93(3), 033612 (2016)
CrossRef ADS Google scholar
[29]
P. R. Brooks, Reactions of oriented molecules, Science 193(4247), 11 (1976)
CrossRef ADS Google scholar
[30]
M. Brouard, D. H. Parker, and S. Y. T. van de Meerakker, Taming molecular collisions using electric and magnetic fields, Chem. Soc. Rev. 43(21), 7279 (2014)
CrossRef ADS Google scholar
[31]
L. J. LeBlanc, A. B. Bardon, J. McKeever, M. H. T. Extavour, D. Jervis, J. H. Thywissen, F. Piazza, and A. Smerzi, Dynamics of a tunable superfluid junction, Phys. Rev. Lett. 106(2), 025302 (2011)
CrossRef ADS Google scholar
[32]
S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, The a.c. and d.c. Josephson effects in a Bose–Einstein condensate, Nature 449(7162), 579 (2007)
CrossRef ADS Google scholar
[33]
S. Y. T. van de Meerakker, H. L. Bethlem, N. Vanhaecke, and G. Meijer, Manipulation and control of molecular beams, Chem. Rev. 112(9), 4828 (2012)
CrossRef ADS Google scholar
[34]
L. Fusina and G. D. Lonardo, Inversion-rotation spectrum and spectroscopic parameters of 14ND3 in the ground state, J. Mol. Spectrosc. 112(1), 211 (1985)
CrossRef ADS Google scholar
[35]
G. D. Lonardo and A. Trombetti, Dipole moment of the v2= 1 state of ND3 by saturation laser stark spectroscopy, Chem. Phys. Lett. 84(2), 327 (1981)
CrossRef ADS Google scholar
[36]
G. Raithel, G. Birkl, A. Kastberg, W. D. Phillips, and S. L. Rolston, Cooling and localization dynamics in optical lattices, Phys. Rev. Lett. 78(4), 630 (1997)
CrossRef ADS Google scholar
[37]
A. Hemmerich, M. Weidemuller, T. Esslinger, C. Zimmermann, and T. Hansch, Trapping atoms in a dark optical lattice, Phys. Rev. Lett. 75(1), 37 (1995)
CrossRef ADS Google scholar
[38]
M. C. Fischer, K. W. Madison, Q. Niu, and M. G. Raizen, Observation of Rabi oscillations between Bloch bands in an optical potential, Phys. Rev. A 58, R2648(R) (1998)
[39]
M. B. Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, Bloch oscillations of atoms in an optical potential, Phys. Rev. Lett. 76, 4508 (1996)
CrossRef ADS Google scholar
[40]
C. Jurczak, B. Desruelle, K. Sengstock, J. -Y. Courtois, C. I. Westbrook, and A. Aspect, Atomic transport in an optical lattice: An investigation through polarizationselective intensity correlations, Phys. Rev. Lett. 77, 1727 (1996)
CrossRef ADS Google scholar
[41]
S. K. Dutta, B. K. Teo, and G. Raithel, Tunneling dynamics and gauge potentials in optical lattices,Phys. Rev. Lett. 83(10), 1934 (1999)
CrossRef ADS Google scholar
[42]
M. Weidemuller, A. Hemmerich, A. Gorlitz, T. Esslinger, and T. W. Hansch, Bragg diffraction in an atomic lattice bound by light, Phys. Rev. Lett. 75(25), 4583 (1995)
CrossRef ADS Google scholar
[43]
J. K. Pachos and P. L. Knight, Quantum computation with a one-dimensional optical lattice, Phys. Rev. Lett. 91(10), 107902 (2003)
CrossRef ADS Google scholar
[44]
J. P. Yin, W. J. Gao, N. C. Liu, J. J. Hu, and Y. Z. Wang, Magnetic guide and trap for cold neutral atoms with current-carrying wires and conductors, J. Chin. Chem. Soc. (Taipei) 48(3), 555 (2001)
CrossRef ADS Google scholar
[45]
J. P. Yin, W. J. Gao, J. J. Hu, and Y. Q. Wang, Magnetic surface microtraps for realizing an array of alkali atomic Bose–Einstein condensates or Bose clusters, Opt. Commun. 206(1–3), 99 (2007)
[46]
J. P. Yin, W. J. Gao, J. J. Hu, and N. C. Liu, Atomic magnetic lattices and their applications, Chin. Phys. Lett. 19(3), 327 (2002)
CrossRef ADS Google scholar
[47]
J. P. Yin, W. J. Gao, and J. J. Hu, Arrays of microscopic magnetic traps for cold atoms and their applications in atom optics, Chin. Phys. 11(5), 472 (2002)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(3206 KB)

Accesses

Citations

Detail

Sections
Recommended

/