Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides
R. Szcze¸śniak, A. P. Durajski, M. W. Jarosik
Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides
We theoretically investigate the possibility of achieving a superconducting state in transition-metal dichalcogenide bilayers through intercalation, a process previously and widely used to achieve metallization and superconducting states in novel superconductors. For the Ca-intercalated bilayers MoS2 and WS2, we find that the superconducting state is characterized by an electron–phonon coupling constant larger than 1.0 and a superconducting critical temperature of 13.3 and 9.3 K, respectively. These results are superior to other predicted or experimentally observed two-dimensional conventional superconductors and suggest that the investigated materials may be good candidates for nanoscale superconductors. More interestingly, we proved that the obtained thermodynamic properties go beyond the predictions of the mean-field Bardeen–Cooper–Schrieffer approximation and that the calculations conducted within the framework of the strong-coupling Eliashberg theory should be treated as those that yield quantitative results.
2D superconductivity / effect of intercalation / transition-metal dichalcogenides / thermodynamic properties
[1] |
Y.Saito, T.Nojima, and Y.Iwasa, Highly crystalline 2D superconductors, Nat. Rev. Mater. 2(1), 16094 (2016)
CrossRef
ADS
Google scholar
|
[2] |
W.Choi, N.Choudhary, G. H.Han, J.Park, D.Akinwande, and Y. H.Lee, Recent development of twodimensional transition metal dichalcogenides and their applications, Mater. Today20(3), 116(2017)
CrossRef
ADS
Google scholar
|
[3] |
T.Uchihashi, Two-dimensional superconductors with atomic-scale thickness, Supercond. Sci. Technol. 30(1), 013002(2017)
CrossRef
ADS
Google scholar
|
[4] |
B.Sacépé, T.Dubouchet, C.Chapelier, M.Sanquer, M.Ovadia, D.Shahar, M.Feigelman, and L.Ioffe, Localization of preformed cooper pairs in disordered superconductors, Nat. Phys. 7(3), 239(2011)
|
[5] |
Y.Guo, Y. F.Zhang, X. Y.Bao, T. Z.Han, Z.Tang, L. X.Zhang, W. G.Zhu, E. G.Wang, Q.Niu, Z. Q.Qiu, J. F.Jia, Z. X.Zhao, and Q. K.Xue, Superconductivity modulated by quantum size effects, Science306(5703), 1915(2004)
CrossRef
ADS
Google scholar
|
[6] |
A. P.Durajski, Effect of layer thickness on the superconducting properties in ultrathin Pb films, Supercond. Sci. Technol. 28(9), 095011(2015)
CrossRef
ADS
Google scholar
|
[7] |
E.Talantsev, W.Crump, J.Island, Y.Xing, Y.Sun, J.Wang, and J.Tallon, On the origin of critical temperature enhancement in atomically thin superconductors, 2D Mater. 4, 025072(2017)
|
[8] |
A. M.Goldmanand N.Marković, Superconductorinsulator transitions in the two-dimensional limit, Phys. Today51(11), 39(1998)
CrossRef
ADS
Google scholar
|
[9] |
V. L.Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group (I): Classical systems, Sov. Phys. JETP32, 493500(1971)
|
[10] |
V. L.Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group (II): Quantum systems, Sov. Phys. JETP34, 610616(1972)
|
[11] |
J. M.Kosterlitzand D. J.Thouless, Long range order and metastability in two dimensional solids and superfluids (Application of dislocation theory), J. Phys. C5(11), L124(1972)
CrossRef
ADS
Google scholar
|
[12] |
T.Zhang, S.Wu, R.Yang, and G.Zhang, Graphene: Nanostructure engineering and applications, Front. Phys. 12(1), 127206(2017)
CrossRef
ADS
Google scholar
|
[13] |
H. W.Qing, K.Kalantar-Zadeh, A.Kis, J. N.Coleman, and M. S.Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7, 699712(2012)
|
[14] |
X.Duan, C.Wang, A.Pan, R.Yu, and X.Duan, Twodimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges, Chem. Soc. Rev. 44(24), 8859(2015)
CrossRef
ADS
Google scholar
|
[15] |
Y.Guoand J.Robertson, Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures, Appl. Phys. Lett. 108(23), 233104(2016)
CrossRef
ADS
Google scholar
|
[16] |
D.Szcześniak, A.Ennaoui, and S.Ahzi, Complex band structures of transition metal dichalcogenide monolayers with spin–orbit coupling effects, J. Phys.: Condens. Matter28(35), 355301(2016)
CrossRef
ADS
Google scholar
|
[17] |
A.Kandemir, H.Yapicioglu, A.Kinaci, T.Çaǧın, and C.Sevik, Thermal transport properties of MoS2 and MoSe2 monolayers, Nanotechnology27(5), 055703(2016)
CrossRef
ADS
Google scholar
|
[18] |
P.Zhao, J.Zheng, P.Guo, Z.Jiang, L.Cao, and Y.Wan, Electronic and magnetic properties of Re-doped single-layer MoS2: A DFT study, Comput. Mater. Sci. 128, 287(2017)
CrossRef
ADS
Google scholar
|
[19] |
K. K.Kam, and B. A.Parkinson, Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides, J. Phys. Chem. 86(4), 463(1982)
CrossRef
ADS
Google scholar
|
[20] |
K. F.Mak,C.Lee, J.Hone, J.Shan, and T. F.Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805(2010)
CrossRef
ADS
Google scholar
|
[21] |
G.Luo, Z. Z.Zhang, H. O.Li, X. X.Song, G. W.Deng, G.Cao, M.Xiao, and G. P.Guo, Quantum dot behavior in transition metal dichalcogenides nanostructures, Front. Phys. 12(4), 128502(2017)
CrossRef
ADS
Google scholar
|
[22] |
K. S.Novoselov, A. K.Geim, S. V.Morozov, D.Jiang, Y.Zhang, S. V.Dubonos, I. V.Grigorieva, and A. A.Firsov, Electric field effect in atomically thin carbon films, Science306(5696), 666(2004)
CrossRef
ADS
Google scholar
|
[23] |
J. W.Jiang, Graphene versus MoS2: A short review, Front. Phys. 10(3), 287(2015)
CrossRef
ADS
Google scholar
|
[24] |
A. P.Durajski,Influence of hole doping on the superconducting state in graphane, Supercond. Sci. Technol. 28(3), 035002(2015)
CrossRef
ADS
Google scholar
|
[25] |
X.Lin, W.Li, Y.Dong, C.Wang, Q.Chen, and H.Zhang, Two-dimensional metallic MoS2: A DFT study, Comput. Mater. Sci. 124, 49(2016)
CrossRef
ADS
Google scholar
|
[26] |
J.Pešić, R.Gajić, K.Hingerl, and M.Belić, Strainenhanced superconductivity in Li-doped graphene, Europhys. Lett. 108(6), 67005(2014)
CrossRef
ADS
Google scholar
|
[27] |
J. J.Zhang, B.Gao, and S.Dong, Strain-enhanced superconductivity of MoX2 (X= S or Se) bilayers with Na intercalation, Phys. Rev. B93(15), 155430(2016)
CrossRef
ADS
Google scholar
|
[28] |
G. Q.Huang, Z. W.Xing, and D. Y.Xing, Dynamical stability and superconductivity of Li-intercalated bi-layer MoS2: A first-principles prediction, Phys. Rev. B93(10), 104511(2016)
CrossRef
ADS
Google scholar
|
[29] |
X.He, H.Li, Z.Zhu, Z.Dai, Y.Yang, P.Yang, Q.Zhang, P.Li, U.Schwingenschlogl, and X.Zhang, Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure, Appl. Phys. Lett. 109(17), 173105(2016)
CrossRef
ADS
Google scholar
|
[30] |
J. T.Ye, Y. J.Zhang, R.Akashi, M. S.Bahramy, R.Arita, and Y.Iwasa, Superconducting dome in a gatetuned band insulator, Science338(6111), 1193(2012)
CrossRef
ADS
Google scholar
|
[31] |
A. P.Nayak, S.Bhattacharyya, J.Zhu, J.Liu, X.Wu, T.Pandey, C.Jin, A. K.Singh, D.Akinwande, and J.-F.Lin, Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide, Nat. Commun. 5, 3731(2014)
CrossRef
ADS
Google scholar
|
[32] |
Z.Chi, F.Yen, F.Peng, J.Zhu, Y.-J.Zhang, X.Chen, Z.Yang, X.Liu, Y.Ma, Y.Zhao, T.Kagayama, and Y.Iwasa, Ultrahigh pressure superconductivity in molybdenum disulfide, arXiv: 1503.05331 (2015)
|
[33] |
R. B.Somoano, V.Hadek, and A.Rembaum, Alkali metal intercalates of molybdenum disulfide, J. Chem. Phys. 58(2), 697(1973)
CrossRef
ADS
Google scholar
|
[34] |
R. B.Somoano, V.Hadek, A.Rembaum, S.Samson, and J. A.Woollam, The alkaline earth intercalates of molybenum disulfide, J. Chem. Phys. 62(3), 1068(1975)
CrossRef
ADS
Google scholar
|
[35] |
J. A.Woollamand R. B.Somoano, Superconducting critical fields of alkali and alkaline-earth intercalates of MoS2, Phys. Rev. B13, 3843(1976)
CrossRef
ADS
Google scholar
|
[36] |
G. Q.Huang, Z. W.Xing, and D. Y.Xing, Prediction of superconductivity in li-intercalated bilayer phosphorene, Appl. Phys. Lett. 106(11), 113107(2015)
CrossRef
ADS
Google scholar
|
[37] |
Y.Saito, T.Nojima, and Y.Iwasa, Gate-induced superconductivity in two-dimensional atomic crystals, Supercond. Sci. Technol. 29(9), 093001(2016)
CrossRef
ADS
Google scholar
|
[38] |
D.Szcze¸śniak, A. P.Durajski, and R.Szcze¸śniak, Influence of lithium doping on the thermodynamic properties of graphene based superconductors, J. Phys.: Condens. Matter26(25), 255701(2014)
CrossRef
ADS
Google scholar
|
[39] |
S.Ichinokura, K.Sugawara, A.Takayama, T.Takahashi, and S.Hasegawa, Superconducting calciumintercalated bilayer graphene, ACS Nano10, 2761(2016)
CrossRef
ADS
Google scholar
|
[40] |
J.Chapman, Y.Su, C. A.Howard, D.Kundys, A. N.Grigorenko, F.Guinea, A. K.Geim,I. V.Grigorievaand R. R.Nair, Superconductivity in Ca-doped graphene laminates, Sci. Rep. 6(1), 23254(2016)
CrossRef
ADS
Google scholar
|
[41] |
P.Giannozzi, S.Baroni, N.Bonini, M.Calandra, R.Car, C.Cavazzoni, D.Ceresoli, G. L.Chiarotti, M.Cococcioni, I.Dabo, A. D.Corso, S.de Gironcoli, S.Fabris, G.Fratesi, and R.Gebauer, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter21(39), 395502(2009)
CrossRef
ADS
Google scholar
|
[42] |
F.Giustino, Electron-phonon interactions from first principles, Rev. Mod. Phys. 89(1), 015003(2017)
CrossRef
ADS
Google scholar
|
[43] |
F.Giustino, Materials Modelling Using Density Functional Theory: Properties and Predictions, Oxford: Oxford University Press, 2014
|
[44] |
J. L.Verbleand T. J.Wieting, Lattice mode degeneracy in MoS2 and other layer compounds, Phys. Rev. Lett. 25, 362(1970)
CrossRef
ADS
Google scholar
|
[45] |
R.Szcze¸śniak, A. P.Durajski, and M. W.Jarosik, Metallization and superconductivity in Ca-intercalated bilayer MoS2, J. Phys. Chem. Solids111, 254(2017)
CrossRef
ADS
Google scholar
|
[46] |
G. M.Eliashberg, Interactions between electrons and lattice vibrations in a superconductor, Sov. Phys. JETP11, 696(1960)
|
[47] |
J. P.Carbotte, Properties of boson-exchange superconductors, Rev. Mod. Phys. 62(4), 1027(1990)
CrossRef
ADS
Google scholar
|
[48] |
R.Szcze¸śniak, The numerical solution of the imaginaryaxis Eliashberg equations, Acta Phys. Pol. A109(2), 179(2006)
CrossRef
ADS
Google scholar
|
[49] |
R.Szcze¸śniakand A. P.Durajski, Superconductivity well above room temperature in compressed MgH6, Front. Phys. 11(6), 117406(2016)
CrossRef
ADS
Google scholar
|
[50] |
J. P.Carbotteand P.Vashishta, Condensation energy of a superconductor, Phys. Lett. A33(4), 227(1970)
CrossRef
ADS
Google scholar
|
[51] |
J.Sólyom, Fundamentals of the Physics of Solids: Volume 3- Normal, Broken-Symmetry, and Correlated Systems, Springer, 2011
|
[52] |
J.Bardeen, L. N.Cooper, and J. R.Schrieffer, Microscopic theory of superconductivity, Phys. Rev. 106(1), 162(1957)
CrossRef
ADS
Google scholar
|
[53] |
J.Bardeen, L. N.Cooper, and J. R.Schrieffer, Theory of superconductivity, Phys. Rev.108(5), 1175(1957)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |