Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides

R. Szcze¸śniak, A. P. Durajski, M. W. Jarosik

PDF(2906 KB)
PDF(2906 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (2) : 137401. DOI: 10.1007/s11467-017-0726-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides

Author information +
History +

Abstract

We theoretically investigate the possibility of achieving a superconducting state in transition-metal dichalcogenide bilayers through intercalation, a process previously and widely used to achieve metallization and superconducting states in novel superconductors. For the Ca-intercalated bilayers MoS2 and WS2, we find that the superconducting state is characterized by an electron–phonon coupling constant larger than 1.0 and a superconducting critical temperature of 13.3 and 9.3 K, respectively. These results are superior to other predicted or experimentally observed two-dimensional conventional superconductors and suggest that the investigated materials may be good candidates for nanoscale superconductors. More interestingly, we proved that the obtained thermodynamic properties go beyond the predictions of the mean-field Bardeen–Cooper–Schrieffer approximation and that the calculations conducted within the framework of the strong-coupling Eliashberg theory should be treated as those that yield quantitative results.

Keywords

2D superconductivity / effect of intercalation / transition-metal dichalcogenides / thermodynamic properties

Cite this article

Download citation ▾
R. Szcze¸śniak, A. P. Durajski, M. W. Jarosik. Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides. Front. Phys., 2018, 13(2): 137401 https://doi.org/10.1007/s11467-017-0726-2

References

[1]
Y.Saito, T.Nojima, and Y.Iwasa, Highly crystalline 2D superconductors, Nat. Rev. Mater. 2(1), 16094 (2016)
CrossRef ADS Google scholar
[2]
W.Choi, N.Choudhary, G. H.Han, J.Park, D.Akinwande, and Y. H.Lee, Recent development of twodimensional transition metal dichalcogenides and their applications, Mater. Today20(3), 116(2017)
CrossRef ADS Google scholar
[3]
T.Uchihashi, Two-dimensional superconductors with atomic-scale thickness, Supercond. Sci. Technol. 30(1), 013002(2017)
CrossRef ADS Google scholar
[4]
B.Sacépé, T.Dubouchet, C.Chapelier, M.Sanquer, M.Ovadia, D.Shahar, M.Feigelman, and L.Ioffe, Localization of preformed cooper pairs in disordered superconductors, Nat. Phys. 7(3), 239(2011)
[5]
Y.Guo, Y. F.Zhang, X. Y.Bao, T. Z.Han, Z.Tang, L. X.Zhang, W. G.Zhu, E. G.Wang, Q.Niu, Z. Q.Qiu, J. F.Jia, Z. X.Zhao, and Q. K.Xue, Superconductivity modulated by quantum size effects, Science306(5703), 1915(2004)
CrossRef ADS Google scholar
[6]
A. P.Durajski, Effect of layer thickness on the superconducting properties in ultrathin Pb films, Supercond. Sci. Technol. 28(9), 095011(2015)
CrossRef ADS Google scholar
[7]
E.Talantsev, W.Crump, J.Island, Y.Xing, Y.Sun, J.Wang, and J.Tallon, On the origin of critical temperature enhancement in atomically thin superconductors, 2D Mater. 4, 025072(2017)
[8]
A. M.Goldmanand N.Marković, Superconductorinsulator transitions in the two-dimensional limit, Phys. Today51(11), 39(1998)
CrossRef ADS Google scholar
[9]
V. L.Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group (I): Classical systems, Sov. Phys. JETP32, 493500(1971)
[10]
V. L.Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group (II): Quantum systems, Sov. Phys. JETP34, 610616(1972)
[11]
J. M.Kosterlitzand D. J.Thouless, Long range order and metastability in two dimensional solids and superfluids (Application of dislocation theory), J. Phys. C5(11), L124(1972)
CrossRef ADS Google scholar
[12]
T.Zhang, S.Wu, R.Yang, and G.Zhang, Graphene: Nanostructure engineering and applications, Front. Phys. 12(1), 127206(2017)
CrossRef ADS Google scholar
[13]
H. W.Qing, K.Kalantar-Zadeh, A.Kis, J. N.Coleman, and M. S.Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7, 699712(2012)
[14]
X.Duan, C.Wang, A.Pan, R.Yu, and X.Duan, Twodimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges, Chem. Soc. Rev. 44(24), 8859(2015)
CrossRef ADS Google scholar
[15]
Y.Guoand J.Robertson, Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures, Appl. Phys. Lett. 108(23), 233104(2016)
CrossRef ADS Google scholar
[16]
D.Szcześniak, A.Ennaoui, and S.Ahzi, Complex band structures of transition metal dichalcogenide monolayers with spin–orbit coupling effects, J. Phys.: Condens. Matter28(35), 355301(2016)
CrossRef ADS Google scholar
[17]
A.Kandemir, H.Yapicioglu, A.Kinaci, T.Çaǧın, and C.Sevik, Thermal transport properties of MoS2 and MoSe2 monolayers, Nanotechnology27(5), 055703(2016)
CrossRef ADS Google scholar
[18]
P.Zhao, J.Zheng, P.Guo, Z.Jiang, L.Cao, and Y.Wan, Electronic and magnetic properties of Re-doped single-layer MoS2: A DFT study, Comput. Mater. Sci. 128, 287(2017)
CrossRef ADS Google scholar
[19]
K. K.Kam, and B. A.Parkinson, Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides, J. Phys. Chem. 86(4), 463(1982)
CrossRef ADS Google scholar
[20]
K. F.Mak,C.Lee, J.Hone, J.Shan, and T. F.Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805(2010)
CrossRef ADS Google scholar
[21]
G.Luo, Z. Z.Zhang, H. O.Li, X. X.Song, G. W.Deng, G.Cao, M.Xiao, and G. P.Guo, Quantum dot behavior in transition metal dichalcogenides nanostructures, Front. Phys. 12(4), 128502(2017)
CrossRef ADS Google scholar
[22]
K. S.Novoselov, A. K.Geim, S. V.Morozov, D.Jiang, Y.Zhang, S. V.Dubonos, I. V.Grigorieva, and A. A.Firsov, Electric field effect in atomically thin carbon films, Science306(5696), 666(2004)
CrossRef ADS Google scholar
[23]
J. W.Jiang, Graphene versus MoS2: A short review, Front. Phys. 10(3), 287(2015)
CrossRef ADS Google scholar
[24]
A. P.Durajski,Influence of hole doping on the superconducting state in graphane, Supercond. Sci. Technol. 28(3), 035002(2015)
CrossRef ADS Google scholar
[25]
X.Lin, W.Li, Y.Dong, C.Wang, Q.Chen, and H.Zhang, Two-dimensional metallic MoS2: A DFT study, Comput. Mater. Sci. 124, 49(2016)
CrossRef ADS Google scholar
[26]
J.Pešić, R.Gajić, K.Hingerl, and M.Belić, Strainenhanced superconductivity in Li-doped graphene, Europhys. Lett. 108(6), 67005(2014)
CrossRef ADS Google scholar
[27]
J. J.Zhang, B.Gao, and S.Dong, Strain-enhanced superconductivity of MoX2 (X= S or Se) bilayers with Na intercalation, Phys. Rev. B93(15), 155430(2016)
CrossRef ADS Google scholar
[28]
G. Q.Huang, Z. W.Xing, and D. Y.Xing, Dynamical stability and superconductivity of Li-intercalated bi-layer MoS2: A first-principles prediction, Phys. Rev. B93(10), 104511(2016)
CrossRef ADS Google scholar
[29]
X.He, H.Li, Z.Zhu, Z.Dai, Y.Yang, P.Yang, Q.Zhang, P.Li, U.Schwingenschlogl, and X.Zhang, Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure, Appl. Phys. Lett. 109(17), 173105(2016)
CrossRef ADS Google scholar
[30]
J. T.Ye, Y. J.Zhang, R.Akashi, M. S.Bahramy, R.Arita, and Y.Iwasa, Superconducting dome in a gatetuned band insulator, Science338(6111), 1193(2012)
CrossRef ADS Google scholar
[31]
A. P.Nayak, S.Bhattacharyya, J.Zhu, J.Liu, X.Wu, T.Pandey, C.Jin, A. K.Singh, D.Akinwande, and J.-F.Lin, Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide, Nat. Commun. 5, 3731(2014)
CrossRef ADS Google scholar
[32]
Z.Chi, F.Yen, F.Peng, J.Zhu, Y.-J.Zhang, X.Chen, Z.Yang, X.Liu, Y.Ma, Y.Zhao, T.Kagayama, and Y.Iwasa, Ultrahigh pressure superconductivity in molybdenum disulfide, arXiv: 1503.05331 (2015)
[33]
R. B.Somoano, V.Hadek, and A.Rembaum, Alkali metal intercalates of molybdenum disulfide, J. Chem. Phys. 58(2), 697(1973)
CrossRef ADS Google scholar
[34]
R. B.Somoano, V.Hadek, A.Rembaum, S.Samson, and J. A.Woollam, The alkaline earth intercalates of molybenum disulfide, J. Chem. Phys. 62(3), 1068(1975)
CrossRef ADS Google scholar
[35]
J. A.Woollamand R. B.Somoano, Superconducting critical fields of alkali and alkaline-earth intercalates of MoS2, Phys. Rev. B13, 3843(1976)
CrossRef ADS Google scholar
[36]
G. Q.Huang, Z. W.Xing, and D. Y.Xing, Prediction of superconductivity in li-intercalated bilayer phosphorene, Appl. Phys. Lett. 106(11), 113107(2015)
CrossRef ADS Google scholar
[37]
Y.Saito, T.Nojima, and Y.Iwasa, Gate-induced superconductivity in two-dimensional atomic crystals, Supercond. Sci. Technol. 29(9), 093001(2016)
CrossRef ADS Google scholar
[38]
D.Szcze¸śniak, A. P.Durajski, and R.Szcze¸śniak, Influence of lithium doping on the thermodynamic properties of graphene based superconductors, J. Phys.: Condens. Matter26(25), 255701(2014)
CrossRef ADS Google scholar
[39]
S.Ichinokura, K.Sugawara, A.Takayama, T.Takahashi, and S.Hasegawa, Superconducting calciumintercalated bilayer graphene, ACS Nano10, 2761(2016)
CrossRef ADS Google scholar
[40]
J.Chapman, Y.Su, C. A.Howard, D.Kundys, A. N.Grigorenko, F.Guinea, A. K.Geim,I. V.Grigorievaand R. R.Nair, Superconductivity in Ca-doped graphene laminates, Sci. Rep. 6(1), 23254(2016)
CrossRef ADS Google scholar
[41]
P.Giannozzi, S.Baroni, N.Bonini, M.Calandra, R.Car, C.Cavazzoni, D.Ceresoli, G. L.Chiarotti, M.Cococcioni, I.Dabo, A. D.Corso, S.de Gironcoli, S.Fabris, G.Fratesi, and R.Gebauer, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter21(39), 395502(2009)
CrossRef ADS Google scholar
[42]
F.Giustino, Electron-phonon interactions from first principles, Rev. Mod. Phys. 89(1), 015003(2017)
CrossRef ADS Google scholar
[43]
F.Giustino, Materials Modelling Using Density Functional Theory: Properties and Predictions, Oxford: Oxford University Press, 2014
[44]
J. L.Verbleand T. J.Wieting, Lattice mode degeneracy in MoS2 and other layer compounds, Phys. Rev. Lett. 25, 362(1970)
CrossRef ADS Google scholar
[45]
R.Szcze¸śniak, A. P.Durajski, and M. W.Jarosik, Metallization and superconductivity in Ca-intercalated bilayer MoS2, J. Phys. Chem. Solids111, 254(2017)
CrossRef ADS Google scholar
[46]
G. M.Eliashberg, Interactions between electrons and lattice vibrations in a superconductor, Sov. Phys. JETP11, 696(1960)
[47]
J. P.Carbotte, Properties of boson-exchange superconductors, Rev. Mod. Phys. 62(4), 1027(1990)
CrossRef ADS Google scholar
[48]
R.Szcze¸śniak, The numerical solution of the imaginaryaxis Eliashberg equations, Acta Phys. Pol. A109(2), 179(2006)
CrossRef ADS Google scholar
[49]
R.Szcze¸śniakand A. P.Durajski, Superconductivity well above room temperature in compressed MgH6, Front. Phys. 11(6), 117406(2016)
CrossRef ADS Google scholar
[50]
J. P.Carbotteand P.Vashishta, Condensation energy of a superconductor, Phys. Lett. A33(4), 227(1970)
CrossRef ADS Google scholar
[51]
J.Sólyom, Fundamentals of the Physics of Solids: Volume 3- Normal, Broken-Symmetry, and Correlated Systems, Springer, 2011
[52]
J.Bardeen, L. N.Cooper, and J. R.Schrieffer, Microscopic theory of superconductivity, Phys. Rev. 106(1), 162(1957)
CrossRef ADS Google scholar
[53]
J.Bardeen, L. N.Cooper, and J. R.Schrieffer, Theory of superconductivity, Phys. Rev.108(5), 1175(1957)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(2906 KB)

Accesses

Citations

Detail

Sections
Recommended

/