Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study
Yan Wang (王研), Chun-Mei Hao (郝春梅), Hong-Mei Huang (黄红梅), Yan-Ling Li (李延龄)
Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study
The elastic, dynamical, and electronic properties of cubic LiHg and Li3Hg were investigated based on first-principles methods. The elastic constants and phonon spectral calculations confirmed the mechanical and dynamical stability of the materials at ambient conditions. The obtained elastic moduli of LiHg are slightly larger than those of Li3Hg. Both LiHg and Li3Hg are ductile materials with strong shear anisotropy as metals with mixed ionic, covalent, and metallic interactions. The calculated Debye temperatures are 223.5 K and 230.6 K for LiHg and Li3Hg, respectively. The calculated phonon frequency of the T2g mode in Li3Hg is 326.8 cm−1. The p states from the Hg and Li atoms dominate the electronic structure near the Fermi level. These findings may inspire further experimental and theoretical study on the potential technical and engineering applications of similar alkali metal-based intermetallic compounds.
Li-Hg alloys elastic property phonon spectrum electronic structure
[1] |
S.Kauzlarich, Chemistry, Structure and Bonding of Zintl Phases and Ions, New York: VCH Publishers, 1996
|
[2] |
K.Kishioand J. O.Brittain, Defect structure of β-LiAl, J. Phys. Chem. Solids40(12), 933 (1979)
CrossRef
ADS
Google scholar
|
[3] |
N. E.Christensen, Structural phase stability of B2 and B32 intermetallic compounds, Phys. Rev. B32(1), 207(1985)
CrossRef
ADS
Google scholar
|
[4] |
F.Wangand G. J.Miller,Revisiting the Zintl–Klemm concept: Alkali metal trielides, Inorg. Chem. 50(16), 7625(2011)
CrossRef
ADS
Google scholar
|
[5] |
R. E.Olson, Determination of the Li–Hg intermolecular potential from molecular-beam scattering measurements, J. Chem. Phys. 49(10), 4499(1968)
CrossRef
ADS
Google scholar
|
[6] |
U.Buck, H. O.Hoppe, F.Huisken, and H.Pauly, Intermolecular potentials by the inversion of molecular beam scattering data (IV): Differential cross sections and potential for LiHg, J. Chem. Phys. 60(12), 4925(1974)
CrossRef
ADS
Google scholar
|
[7] |
M. M.Gleichmannand B. A.Hess, Relativistic all‐electron ab initiocalculations of ground and excited states of LiHg including spin–orbit effects, J. Chem. Phys. 101(11), 9691(1994)
CrossRef
ADS
Google scholar
|
[8] |
D.Gruberand X.Li, Vibrational constants and longrange potentials of the LiHg (X12) ground state, Chem. Phys. Lett. 240(1–3), 42(1995)
CrossRef
ADS
Google scholar
|
[9] |
D.Gruber, L.Windholz, X.Li, M.Gleichmann, and B.He, Theoretical and experimental studies of th LiHgblue green bands, AIP Conf. Proc. 328, 406(1995)
CrossRef
ADS
Google scholar
|
[10] |
D.Gruber, X.Li, L.Windholz, M.Gleichmann, B. A.Hess, I.Vezmar, and G.Pichler, The LiHg(22∏3/2−X2Σ1/2+) system, J. Phys. Chem. 100(24), 10062(1996)
CrossRef
ADS
Google scholar
|
[11] |
D.Gruber, M.Musso, L.Windholz, M.Gleichmann, B. A.Hess, F.Fuso, and M.Allegrini, Study of the LiHg excimer: Blue–green bands, J. Chem. Phys. 101(2), 929(1994)
CrossRef
ADS
Google scholar
|
[12] |
L. F.Kozinand S. C.Hansen, Mercury Handbook: Chemistry, Applications and Environmental Impact, United Kingdom: Royal Society of Chemistry publishing, 2013
|
[13] |
F.Tamborninoand C.Hoch, Bad metal behaviour in the new Hg-rich amalgam KHg6 with polar metallic bonding, J. Alloys Compd. 618, 299(2015)
CrossRef
ADS
Google scholar
|
[14] |
J. P.Perdew, K.Burke, and M.Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865(1996)
CrossRef
ADS
Google scholar
|
[15] |
G.Kresseand J.Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15(1996)
CrossRef
ADS
Google scholar
|
[16] |
P. E.Blöchl, Projector augmented-wave method, Phys. Rev. B50(24), 17953(1994)
CrossRef
ADS
Google scholar
|
[17] |
G.Kresseand D.Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B59(3), 1758(1999)
CrossRef
ADS
Google scholar
|
[18] |
P.Giannozzi,
CrossRef
ADS
Google scholar
|
[19] |
M.Bornand K.Huang, Dynamical Theory of Crystal Lattices, Oxford: Clarendon Press, 1956
|
[20] |
Y. L.Liand Z.Zeng, Potential ultra-incompressible material ReN: First-principles prediction, Solid State Commun. 149(39–40), 1591(2009)
CrossRef
ADS
Google scholar
|
[21] |
Y.Li, Z.Zeng, and H.Lin, Structural, elastic, electronic and dynamical properties of OsB and ReB: Density functional calculations, Chem. Phys. Lett. 492(4–6), 246(2010)
CrossRef
ADS
Google scholar
|
[22] |
Y. L.Li, W.Luo, X. J.Chen, Z.Zeng, H. Q.Lin, and R.Ahuja, Formation of Nanofoam carbon and reemergence of Superconductivity in compressed CaC6, Sci. Rep. 3(1), 3331(2013)
CrossRef
ADS
Google scholar
|
[23] |
Y. L.Li, W.Luo, Z.Zeng, H. Q.Lin, H. K.Mao, and R.Ahuja, Pressure-induced superconductivity in CaC2, Proc. Natl. Acad. Sci. USA110(23), 9289(2013)
CrossRef
ADS
Google scholar
|
[24] |
R.Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Lond.65(5), 349(1952)
CrossRef
ADS
Google scholar
|
[25] |
S. F.Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45(367), 823(1954)
CrossRef
ADS
Google scholar
|
[26] |
P.Ravindran, L.Fast, P. A.Korzhavyi, B.Johansson, J.Wills, and O.Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, J. Appl. Phys. 84(9), 4891(1998)
CrossRef
ADS
Google scholar
|
[27] |
Y. L.Liand Z.Zeng, Structural, elastic, and electronic properties of ReO2, Chin. Phys. Lett. 25(11), 4086(2008)
CrossRef
ADS
Google scholar
|
[28] |
C.Zener, Elasticity and Anelasticity of Metals, Chicago: Chicago University Press, 1948
|
[29] |
Y. L.Li, S. N.Wang, A. R.Oganov, H.Gou, J. S.Simth, and T. A.Strobel, Investigation of exotic stable calcium carbides using theory and experiment, Nat. Commun. 6, 6974(2015)
CrossRef
ADS
Google scholar
|
[30] |
S. J.Clark, M. D.Segall, C. J.Pickard, P. J.Hasnip, M. J.Probert, K.Refson, and M. C.Payne, First principles methods using CASTEP, Z. Kristallogr. 220(5–6), 567(2005)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |