Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study

Yan Wang (王研), Chun-Mei Hao (郝春梅), Hong-Mei Huang (黄红梅), Yan-Ling Li (李延龄)

PDF(2053 KB)
PDF(2053 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (2) : 137102. DOI: 10.1007/s11467-017-0723-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study

Author information +
History +

Abstract

The elastic, dynamical, and electronic properties of cubic LiHg and Li3Hg were investigated based on first-principles methods. The elastic constants and phonon spectral calculations confirmed the mechanical and dynamical stability of the materials at ambient conditions. The obtained elastic moduli of LiHg are slightly larger than those of Li3Hg. Both LiHg and Li3Hg are ductile materials with strong shear anisotropy as metals with mixed ionic, covalent, and metallic interactions. The calculated Debye temperatures are 223.5 K and 230.6 K for LiHg and Li3Hg, respectively. The calculated phonon frequency of the T2g mode in Li3Hg is 326.8 cm−1. The p states from the Hg and Li atoms dominate the electronic structure near the Fermi level. These findings may inspire further experimental and theoretical study on the potential technical and engineering applications of similar alkali metal-based intermetallic compounds.

Keywords

Li-Hg alloys elastic property phonon spectrum electronic structure

Cite this article

Download citation ▾
Yan Wang (王研), Chun-Mei Hao (郝春梅), Hong-Mei Huang (黄红梅), Yan-Ling Li (李延龄). Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study. Front. Phys., 2018, 13(2): 137102 https://doi.org/10.1007/s11467-017-0723-5

References

[1]
S.Kauzlarich, Chemistry, Structure and Bonding of Zintl Phases and Ions, New York: VCH Publishers, 1996
[2]
K.Kishioand J. O.Brittain, Defect structure of β-LiAl, J. Phys. Chem. Solids40(12), 933 (1979)
CrossRef ADS Google scholar
[3]
N. E.Christensen, Structural phase stability of B2 and B32 intermetallic compounds, Phys. Rev. B32(1), 207(1985)
CrossRef ADS Google scholar
[4]
F.Wangand G. J.Miller,Revisiting the Zintl–Klemm concept: Alkali metal trielides, Inorg. Chem. 50(16), 7625(2011)
CrossRef ADS Google scholar
[5]
R. E.Olson, Determination of the Li–Hg intermolecular potential from molecular-beam scattering measurements, J. Chem. Phys. 49(10), 4499(1968)
CrossRef ADS Google scholar
[6]
U.Buck, H. O.Hoppe, F.Huisken, and H.Pauly, Intermolecular potentials by the inversion of molecular beam scattering data (IV): Differential cross sections and potential for LiHg, J. Chem. Phys. 60(12), 4925(1974)
CrossRef ADS Google scholar
[7]
M. M.Gleichmannand B. A.Hess, Relativistic all‐electron ab initiocalculations of ground and excited states of LiHg including spin–orbit effects, J. Chem. Phys. 101(11), 9691(1994)
CrossRef ADS Google scholar
[8]
D.Gruberand X.Li, Vibrational constants and longrange potentials of the LiHg (X12) ground state, Chem. Phys. Lett. 240(1–3), 42(1995)
CrossRef ADS Google scholar
[9]
D.Gruber, L.Windholz, X.Li, M.Gleichmann, and B.He, Theoretical and experimental studies of th LiHgblue green bands, AIP Conf. Proc. 328, 406(1995)
CrossRef ADS Google scholar
[10]
D.Gruber, X.Li, L.Windholz, M.Gleichmann, B. A.Hess, I.Vezmar, and G.Pichler, The LiHg(22∏3/2−X2Σ1/2+) system, J. Phys. Chem. 100(24), 10062(1996)
CrossRef ADS Google scholar
[11]
D.Gruber, M.Musso, L.Windholz, M.Gleichmann, B. A.Hess, F.Fuso, and M.Allegrini, Study of the LiHg excimer: Blue–green bands, J. Chem. Phys. 101(2), 929(1994)
CrossRef ADS Google scholar
[12]
L. F.Kozinand S. C.Hansen, Mercury Handbook: Chemistry, Applications and Environmental Impact, United Kingdom: Royal Society of Chemistry publishing, 2013
[13]
F.Tamborninoand C.Hoch, Bad metal behaviour in the new Hg-rich amalgam KHg6 with polar metallic bonding, J. Alloys Compd. 618, 299(2015)
CrossRef ADS Google scholar
[14]
J. P.Perdew, K.Burke, and M.Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865(1996)
CrossRef ADS Google scholar
[15]
G.Kresseand J.Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15(1996)
CrossRef ADS Google scholar
[16]
P. E.Blöchl, Projector augmented-wave method, Phys. Rev. B50(24), 17953(1994)
CrossRef ADS Google scholar
[17]
G.Kresseand D.Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B59(3), 1758(1999)
CrossRef ADS Google scholar
[18]
P.Giannozzi, , QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter21, 395502(2009)
CrossRef ADS Google scholar
[19]
M.Bornand K.Huang, Dynamical Theory of Crystal Lattices, Oxford: Clarendon Press, 1956
[20]
Y. L.Liand Z.Zeng, Potential ultra-incompressible material ReN: First-principles prediction, Solid State Commun. 149(39–40), 1591(2009)
CrossRef ADS Google scholar
[21]
Y.Li, Z.Zeng, and H.Lin, Structural, elastic, electronic and dynamical properties of OsB and ReB: Density functional calculations, Chem. Phys. Lett. 492(4–6), 246(2010)
CrossRef ADS Google scholar
[22]
Y. L.Li, W.Luo, X. J.Chen, Z.Zeng, H. Q.Lin, and R.Ahuja, Formation of Nanofoam carbon and reemergence of Superconductivity in compressed CaC6, Sci. Rep. 3(1), 3331(2013)
CrossRef ADS Google scholar
[23]
Y. L.Li, W.Luo, Z.Zeng, H. Q.Lin, H. K.Mao, and R.Ahuja, Pressure-induced superconductivity in CaC2, Proc. Natl. Acad. Sci. USA110(23), 9289(2013)
CrossRef ADS Google scholar
[24]
R.Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Lond.65(5), 349(1952)
CrossRef ADS Google scholar
[25]
S. F.Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45(367), 823(1954)
CrossRef ADS Google scholar
[26]
P.Ravindran, L.Fast, P. A.Korzhavyi, B.Johansson, J.Wills, and O.Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, J. Appl. Phys. 84(9), 4891(1998)
CrossRef ADS Google scholar
[27]
Y. L.Liand Z.Zeng, Structural, elastic, and electronic properties of ReO2, Chin. Phys. Lett. 25(11), 4086(2008)
CrossRef ADS Google scholar
[28]
C.Zener, Elasticity and Anelasticity of Metals, Chicago: Chicago University Press, 1948
[29]
Y. L.Li, S. N.Wang, A. R.Oganov, H.Gou, J. S.Simth, and T. A.Strobel, Investigation of exotic stable calcium carbides using theory and experiment, Nat. Commun. 6, 6974(2015)
CrossRef ADS Google scholar
[30]
S. J.Clark, M. D.Segall, C. J.Pickard, P. J.Hasnip, M. J.Probert, K.Refson, and M. C.Payne, First principles methods using CASTEP, Z. Kristallogr. 220(5–6), 567(2005)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(2053 KB)

Accesses

Citations

Detail

Sections
Recommended

/