Quantum connectivity optimization algorithms for entanglement source deployment in a quantum multi-hop network
Zhen-Zhen Zou, Xu-Tao Yu, Zai-Chen Zhang
Quantum connectivity optimization algorithms for entanglement source deployment in a quantum multi-hop network
At first, the entanglement source deployment problem is studied in a quantum multi-hop network, which has a significant influence on quantum connectivity. Two optimization algorithms are introduced with limited entanglement sources in this paper. A deployment algorithm based on node position (DNP) improves connectivity by guaranteeing that all overlapping areas of the distribution ranges of the entanglement sources contain nodes. In addition, a deployment algorithm based on an improved genetic algorithm (DIGA) is implemented by dividing the region into grids. From the simulation results, DNP and DIGA improve quantum connectivity by 213.73% and 248.83% compared to random deployment, respectively, and the latter performs better in terms of connectivity. However, DNP is more flexible and adaptive to change, as it stops running when all nodes are covered.
entanglement source deployment / quantum connectivity / deployment algorithm
[1] |
H. J.Kimble, The quantum internet, Nature453(7198), 1023 (2008)
CrossRef
ADS
Google scholar
|
[2] |
C. H.Bennett, G.Brassard, C.Crepeau, R.Jozsa, A.Peres, and W. K.Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895(1993)
CrossRef
ADS
Google scholar
|
[3] |
D.Bouwmeester, J. W.Pan, K.Mattle, M.Eibl, H.Weinfurter, and A.Zeilinger, Experimental quantum teleportation, Nature390(6660), 575(1997)
CrossRef
ADS
Google scholar
|
[4] |
A.Karlssonand M.Bourennane, Quantum teleportation using three-particle entanglement, Phys. Rev. A58(6), 4394(1998)
CrossRef
ADS
Google scholar
|
[5] |
F. L.Yanand T.Yan, Probabilistic teleportation via a nonmaximally entangled GHZ state, Chin. Sci. Bull. 55(10), 902(2010)
CrossRef
ADS
Google scholar
|
[6] |
A. K.Pati, Assisted cloning and orthogonal complementing of an unknown state, Phys. Rev. A61, 022308(1999)
CrossRef
ADS
Google scholar
|
[7] |
P.Espoukehand P.Pedram, Quantum teleportation through noisy channels with multi-qubit GHZ states, Quantum Inform. Process. 13(8), 1789(2014)
CrossRef
ADS
Google scholar
|
[8] |
P.Agrawaland A.Pati, Perfect teleportation and superdense coding with W states, Phys. Rev. A74(6), 062320(2006)
CrossRef
ADS
Google scholar
|
[9] |
S.Adhikari, A. S.Majumdar, S.Roy, B.Ghosh, and N.Nayak, Teleportation via maximally and non-maximally entangled mixed states, Quantum Inf. Comput. 10(5–6), 0398(2010)
|
[10] |
F.Verstraeteand H.Verschelde, Optimal teleportation with a mixed state of two qubits, Phys. Rev. Lett. 90(9), 097901(2003)
CrossRef
ADS
Google scholar
|
[11] |
G.Rigolin, Quantum teleportation of an arbitrary two qubit state and its relation to multipartite entanglement, Phys. Rev. A71, 032303(2005)
CrossRef
ADS
Google scholar
|
[12] |
S.Muralidharanand P. K.Panigrahi, Perfect teleportation, quantum state sharing and superdense coding through a genuinely entangled five-qubit state, Phys. Rev. A77(3), 032321(2008)
CrossRef
ADS
Google scholar
|
[13] |
D. P.Tian, Y. J.Tao, and M.Qin, Teleportation of an arbitrary two-qudit state based on the non-maximally four qudit cluster state, Sci. China G51, 1523(2008)
CrossRef
ADS
Google scholar
|
[14] |
J. C.Liu, Y. H.Li, and Y. Y.Nie, Controlled teleportation of an arbitrary two-particle pure or mixed state by using a five-qubit cluster state, Int. J. Theor. Phys. 49(8), 1976(2010)
CrossRef
ADS
Google scholar
|
[15] |
Y. L.Liu, Z. X.Man, and Y. J.Xia, Quantum teleportation of an arbitrary n-qubit state via non-maximally entangled state, Int. J. Quant. Inf. 5(05), 673(2007)
CrossRef
ADS
Google scholar
|
[16] |
D.Sahaand P. K.Panigrahi, N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel, Quantum Inform. Process. 11(2), 615(2012)
CrossRef
ADS
Google scholar
|
[17] |
P. X.Chen, S. Y.Zhu, and G. C.Guo, General form of genuine multipartite entanglement quantum channels for teleportation, Phys. Rev. A74(3), 032324(2006)
CrossRef
ADS
Google scholar
|
[18] |
A. K.Ekert, Quantum cryptography based on Bell theorem, Phys. Rev. Lett. 67(6), 661(1991)
CrossRef
ADS
Google scholar
|
[19] |
R.Ursin, F.Tiefenbacher, T.Schmitt-Manderbach, H.Weier, T.Scheidl, M.Lindenthal, B.Blauensteiner, T.Jennewein, J.Perdigues, P.Trojek, B.Ömer, M.Fürst, M.Meyenburg,J.Rarity, Z.Sodnik, C.Barbieri, H.Weinfurter, and A.Zeilinger, Entanglement-based quantum communication over 144 km, Nat. Phys. 3(7), 481(2007)
|
[20] |
F. G.Deng, G. L.Long, and X. S.Liu, A Two-step quantum direct communication protocol using the Einstein- Podolsky-Rosen pair block, Phys. Rev. A68(4), 042317(2003)
CrossRef
ADS
Google scholar
|
[21] |
J. Y.Hu, B.Yu, M. Y.Jing, L. T.Xiao, S. T.Jia, G. Q.Qin, and G. L.Long, Experimental quantum secure direct communication with single photons, Light Sci. Appl. 5(9), e16144(2016)
CrossRef
ADS
Google scholar
|
[22] |
M.Cao, S. Q.Zhu, and J. X.Fang, Teleportation of n-particle state via npairs of EPR channels, Commum. Theor. Phys. 41(5), 689(2004)
CrossRef
ADS
Google scholar
|
[23] |
P. R.Tapster, J. G.Rarity, and P. C. M.Owens, Violation of Bell’s inequality over 4 km of optical fiber, Phys. Rev. Lett. 73(14), 1923(1994)
CrossRef
ADS
Google scholar
|
[24] |
W.Tittel, J.Brendel, H.Zbinden, and N.Gisin, Violation of Bell inequalities by photons more than 10 km apart, Phys. Rev. Lett. 81(17), 3563(1998)
CrossRef
ADS
Google scholar
|
[25] |
H. J.Briegel, W.Dür, J. I.Cirac, and P.Zoller, Quantum repeaters: The role of imperfect local operations in quantum communication, Phys. Rev. Lett. 81(26), 5932(1998)
CrossRef
ADS
Google scholar
|
[26] |
M.Aspelmeyer, H. R.Böhm, T.Gyatso, T.Jennewein, R.Kaltenbaek, M.Lindenthal, G.Molina-Terriza, A.Poppe, K.Resch, M.Taraba, R.Ursin, P.Walther, and A.Zeilinger, Long-distance free-space distribution of quantum entanglement, Science301(5633), 621(2003)
CrossRef
ADS
Google scholar
|
[27] |
C. Z.Peng, T.Yang, X. H.Bao, J.Zhang, X. M.Jin, F. Y.Feng, B.Yang, J.Yang, J.Yin, Q.Zhang, N.Li, B. L.Tian, and J. W.Pan, Experimental free-space distribution of entangled photon pairs over 13 km: Towards satellite-based global quantum communication, Phys. Rev. Lett.94(15), 150501(2005)
CrossRef
ADS
Google scholar
|
[28] |
A.Fedrizzi, R.Ursin, T.Herbst, M.Nespoli, R.Prevedel, T.Scheidl, F.Tiefenbacher, T.Jennewein, and A.Zeilinger, High-fidelity transmission of entanglement over a high-loss freespace channel, Nat. Phys. 5(6), 389(2009)
|
[29] |
D.Boschi, S.Branca, F.De Martini, L.Hardy, and S.Popescu,Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett.80(6), 1121(1998)
CrossRef
ADS
Google scholar
|
[30] |
X. M.Jin, J. G.Ren, B.Yang, Z. H.Yi, F.Zhou, X. F.Xu, S. K.Wang, D.Yang, Y. F.Hu, S.Jiang, T.Yang, H.Yin, K.Chen, C. Z.Peng, and J. W.Pan, Experimental free-space quantum teleportation, Nat. Photonics4(6), 376(2010)
CrossRef
ADS
Google scholar
|
[31] |
J.Yin, J. G.Ren, H.Lu, Y.Cao, H. L.Yong, Y. P.Wu, C.Liu, S. K.Liao, F.Zhou, Y.Jiang, X. D.Cai, P.Xu, G. S.Pan,J. J.Jia, Y. M.Huang, H.Yin, J. Y.Wang, Y. A.Chen, C. Z.Peng, and J. W.Pan, Quantum teleportation and entanglement distribution over 100- kilometre free-space channels, Nature488(7410), 185(2012)
CrossRef
ADS
Google scholar
|
[32] |
X. T.Yu, Z. C.Zhang, and J.Xu, Distributed wireless quantum communication networks with partially entangled pairs, Chin. Phys. B23, 010303(2014)
CrossRef
ADS
Google scholar
|
[33] |
L. H.Shi, X. T.Yu, X. F.Cai,Y. X.Gong, and Z. C.Zhang, Quantum information transmission in the quantum wireless multihop network based on Werner state, Chin. Phys. B24(5), 050308(2015)
CrossRef
ADS
Google scholar
|
[34] |
X. F.Cai, X. T.Yu, L. H.Shi, and Z. C.Zhang,Partially entangled states bridge in quantum teleportation, Front. Phys. 9(5), 646(2014)
CrossRef
ADS
Google scholar
|
[35] |
K.Wang, X. T.Yu, S. L.Lu, and Y. X.Gong, Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation, Phys. Rev. A89, 022329(2014)
CrossRef
ADS
Google scholar
|
[36] |
P. Y.Xiong, X. T.Yu, H. T.Zhan, and Z. C.Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11(4), 110303(2016)
CrossRef
ADS
Google scholar
|
[37] |
Z. Z.Zou, X. T.Yu, Y. X.Gong, and Z. C.Zhang, Multihop teleportation of two-qubit state via the composite GHZ-Bell channel, Phys. Lett. A381(2), 76(2017)
CrossRef
ADS
Google scholar
|
[38] |
N.Gisin, G.Ribordy, W.Tittel, and H.Zbinden, Quantum cryptography, Rev. Mod. Phys. 74(1), 145(2002)
CrossRef
ADS
Google scholar
|
[39] |
C. H.Bennett, G.Brassard, S.Popescu, B.Schumacher, J. A.Smolin, and W. K.Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett. 76(5), 722(1996)
CrossRef
ADS
Google scholar
|
[40] |
J. W.Pan,C.Simon, ČBrukner, and A.Zeilinger, Entanglement purification for quantum communication, Nature410(6832), 1067(2001)
CrossRef
ADS
Google scholar
|
[41] |
F. G.Deng, One-step error correction for multipartite polarization entanglement, Phys. Rev. A83(6), 062316(2011)
CrossRef
ADS
Google scholar
|
[42] |
Y. B.Sheng, J.Pan, R.Guo, L.Zhou, and L.Wang, Efficient N-particle W state concentration with different parity check gates, Sci. China Phys. Mech. Astron. 58(6), 1(2015)
CrossRef
ADS
Google scholar
|
[43] |
L.Zhouand Y. B.Sheng, Purification of logic-qubit entanglement, Sci. Rep. 6(1), 28813(2016)
CrossRef
ADS
Google scholar
|
[44] |
G.Boudreau, J.Panicker, N.Guo, R.Chang, N.Wang, and S.Vrzic, Interference coordination and cancellation for 4G networks, IEEE Commun. Mag. 47(4), 74(2009)
CrossRef
ADS
Google scholar
|
[45] |
E. Q. V.Martinsand M. M. B.Pascoal, A new implementation of Yen’s ranking loopless paths algorithm, Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 1(2), 121(2003)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |