Slow light effect with high group index and wideband by saddle-like mode in PC-CROW

Yong Wan , Li-Jun Jiang , Sheng Xu , Meng-Xue Li , Meng-Nan Liu , Cheng-Yi Jiang , Feng Yuan

Front. Phys. ›› 2018, Vol. 13 ›› Issue (2) : 134202

PDF (1413KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (2) : 134202 DOI: 10.1007/s11467-017-0719-1
RESEARCH ARTICLE

Slow light effect with high group index and wideband by saddle-like mode in PC-CROW

Author information +
History +
PDF (1413KB)

Abstract

Slow light with high group index and wideband is achieved in photonic crystal coupled-resonator optical waveguides (PC-CROWs). According to the eye-shaped scatterers and various microcavities, saddlelike curves between the normalized frequency f and wave number k can be obtained by adjusting the parameters of the scatterers, parameters of the coupling microcavities, and positions of the scatterers. Slow light with decent flat band and group index can then be achieved by optimizing the parameters. Simulations prove that the maximal value of the group index is>104, and the normalized delay bandwidth product within a new varying range of ng>102 or ng>103 can be a new and effective criterion of evaluation for the slow light in PC-CROWs.

Keywords

eye-shaped scatterer / slow light / photonic crystal / coupled-resonator optical waveguide

Cite this article

Download citation ▾
Yong Wan, Li-Jun Jiang, Sheng Xu, Meng-Xue Li, Meng-Nan Liu, Cheng-Yi Jiang, Feng Yuan. Slow light effect with high group index and wideband by saddle-like mode in PC-CROW. Front. Phys., 2018, 13(2): 134202 DOI:10.1007/s11467-017-0719-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, Slowlight optical buffers: Capabilities and fundamental limitations, J. Lightwave Technol. 23(12), 4046 (2005)

[2]

S. K. Tripathy, S. Sahu, C. Mohapatro, and S. P. Dash, Implementation of optical logic gates using closed packed 2D-photonic crystal structure, Opt. Commun. 285(13–14), 3234 (2012)

[3]

K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, Ultralow-energy and highcontrast all-optical switch involving Fano resonance based on coupled photonic crystal nanomicrocavities, Opt. Express 21(10), 11877 (2013)

[4]

Y. Wan, S. Ge, Y. Guo, and M. Yun, Application of 2D graded eye-shape scatterers for slow light effect in photonic crystal line-defect waveguide, Optik (Stuttg.) 125(5), 1605 (2014)

[5]

J. Chen, G. von Freymann, S. Choi, and G. Ozin, Amplified photochemistry with slow photons, Adv. Mater. 18(14), 1915 (2006)

[6]

Z. Cai, Z. Xiong, X. Lu, and J. Teng, In situ gold-loaded titania photonic crystals with enhanced photocatalytic activity, J. Mater. Chem. A 2(2), 545 (2014)

[7]

T. Baba, Slow light in photonic crystals, Nat. Photon. 2, 465 (2008)

[8]

A. C. Liapis, Optimizing photonic crystal waveguides for on-chip spectroscopic applications, Opt. Express 21(8), 10160 (2013)

[9]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, Dispersion engineered slow light in photonic crystal: A comparison, J. Opt. 12(10), 104004 (2010)

[10]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Coupledresonator optical waveguide: A proposal and analysis, Opt. Lett. 24(11), 711 (1999)

[11]

K. Sakai, E. Miyai, and S. Noda, Two-dimensional coupled wave theory for square-lattice photonic-crystal lasers with TM-polarization, Opt. Express 15(7), 3981 (2007)

[12]

E. Waks and J. Vuckovic, Coupled mode theory for photonic crystal cavity-waveguide interaction, Opt. Express 13(13), 5064 (2005)

[13]

H. Tian, F. Long, W. Liu, and Y. Ji, Tunable slow light and buffer capability in photonic crystal coupledmicrocavity waveguides based on electro-optic effect, Opt. Commun. 285(10–11), 2760 (2012)

[14]

K. Tian, W. Arora, S. Takahashi, J. Hong, and G. Barbastathis, Dynamic group velocity control in a mechanically tunable photonic-crystal coupled-resonator optical waveguide, Phys. Rev. B 80(13), 134305 (2009)

[15]

K. Üstün and H. Kurt, Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides, Opt. Express 18(20), 21155 (2010)

[16]

N. Matsuda, E. Kuramochi, H. Takesue, and M. Notomi, Dispersion and light transport characteristics of large-scale photonic-crystal coupled nanomicrocavity arrays, Opt. Lett. 39(8), 2290 (2014)

[17]

H. Kurt, M. Turduev, and I. H. Giden, Crescent shaped dielectric periodic structure for light manipulation, Opt. Express 20(7), 7184 (2012)

[18]

Y. Wan, Z. Cai, Q. Li, and X. S. Zhao, Simulation and fabrication of THz waveguides with silicon wafer by using eye-shaped pillars as building blocks, Appl. Phys. A 102(2), 373 (2011)

[19]

Y. Wan, K. Fu, C. H. Li, and M. J. Yun, Improving slow light effect in photonic crystal line-defect waveguide by using eye-shaped scatterers, Opt. Commun. 286, 192 (2013)

[20]

C. Li, R. Su, Y. Wang, and X. Zhang, Theoretical study of ultra-wideband slow light in dual-stub-coupled plasmonic waveguide, Opt. Commun. 377, 10 (2016)

[21]

N. Zhu, Y. Y. Li, C. C. Chen, and S. Yan, Slow light in dual-periodic photonic crystals based slotted-waveguide coupled cavity, Opt. Laser Technol. 83, 125 (2016)

[22]

Y. Wan, X. Ge, S. Xu, Y. Guo, and F. Yuan, Ultra-slow light effects in symmetric and asymmetric waveguide structures with moon-like scatterers, Front. Phys. 12(1), 124204 (2017)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (1413KB)

1107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/