Slow light effect with high group index and wideband by saddle-like mode in PC-CROW

Yong Wan, Li-Jun Jiang, Sheng Xu, Meng-Xue Li, Meng-Nan Liu, Cheng-Yi Jiang, Feng Yuan

PDF(1413 KB)
PDF(1413 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (2) : 134202. DOI: 10.1007/s11467-017-0719-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Slow light effect with high group index and wideband by saddle-like mode in PC-CROW

Author information +
History +

Abstract

Slow light with high group index and wideband is achieved in photonic crystal coupled-resonator optical waveguides (PC-CROWs). According to the eye-shaped scatterers and various microcavities, saddlelike curves between the normalized frequency f and wave number k can be obtained by adjusting the parameters of the scatterers, parameters of the coupling microcavities, and positions of the scatterers. Slow light with decent flat band and group index can then be achieved by optimizing the parameters. Simulations prove that the maximal value of the group index is>104, and the normalized delay bandwidth product within a new varying range of ng>102 or ng>103 can be a new and effective criterion of evaluation for the slow light in PC-CROWs.

Keywords

eye-shaped scatterer / slow light / photonic crystal / coupled-resonator optical waveguide

Cite this article

Download citation ▾
Yong Wan, Li-Jun Jiang, Sheng Xu, Meng-Xue Li, Meng-Nan Liu, Cheng-Yi Jiang, Feng Yuan. Slow light effect with high group index and wideband by saddle-like mode in PC-CROW. Front. Phys., 2018, 13(2): 134202 https://doi.org/10.1007/s11467-017-0719-1

References

[1]
R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, Slowlight optical buffers: Capabilities and fundamental limitations, J. Lightwave Technol. 23(12), 4046 (2005)
CrossRef ADS Google scholar
[2]
S. K. Tripathy, S. Sahu, C. Mohapatro, and S. P. Dash, Implementation of optical logic gates using closed packed 2D-photonic crystal structure, Opt. Commun. 285(13–14), 3234 (2012)
CrossRef ADS Google scholar
[3]
K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, Ultralow-energy and highcontrast all-optical switch involving Fano resonance based on coupled photonic crystal nanomicrocavities, Opt. Express 21(10), 11877 (2013)
CrossRef ADS Google scholar
[4]
Y. Wan, S. Ge, Y. Guo, and M. Yun, Application of 2D graded eye-shape scatterers for slow light effect in photonic crystal line-defect waveguide, Optik (Stuttg.) 125(5), 1605 (2014)
CrossRef ADS Google scholar
[5]
J. Chen, G. von Freymann, S. Choi, and G. Ozin, Amplified photochemistry with slow photons, Adv. Mater. 18(14), 1915 (2006)
CrossRef ADS Google scholar
[6]
Z. Cai, Z. Xiong, X. Lu, and J. Teng, In situ gold-loaded titania photonic crystals with enhanced photocatalytic activity, J. Mater. Chem. A 2(2), 545 (2014)
CrossRef ADS Google scholar
[7]
T. Baba, Slow light in photonic crystals, Nat. Photon. 2, 465 (2008)
CrossRef ADS Google scholar
[8]
A. C. Liapis, Optimizing photonic crystal waveguides for on-chip spectroscopic applications, Opt. Express 21(8), 10160 (2013)
CrossRef ADS Google scholar
[9]
S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, Dispersion engineered slow light in photonic crystal: A comparison, J. Opt. 12(10), 104004 (2010)
CrossRef ADS Google scholar
[10]
A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Coupledresonator optical waveguide: A proposal and analysis, Opt. Lett. 24(11), 711 (1999)
CrossRef ADS Google scholar
[11]
K. Sakai, E. Miyai, and S. Noda, Two-dimensional coupled wave theory for square-lattice photonic-crystal lasers with TM-polarization, Opt. Express 15(7), 3981 (2007)
CrossRef ADS Google scholar
[12]
E. Waks and J. Vuckovic, Coupled mode theory for photonic crystal cavity-waveguide interaction, Opt. Express 13(13), 5064 (2005)
CrossRef ADS Google scholar
[13]
H. Tian, F. Long, W. Liu, and Y. Ji, Tunable slow light and buffer capability in photonic crystal coupledmicrocavity waveguides based on electro-optic effect, Opt. Commun. 285(10–11), 2760 (2012)
CrossRef ADS Google scholar
[14]
K. Tian, W. Arora, S. Takahashi, J. Hong, and G. Barbastathis, Dynamic group velocity control in a mechanically tunable photonic-crystal coupled-resonator optical waveguide, Phys. Rev. B 80(13), 134305 (2009)
CrossRef ADS Google scholar
[15]
K. Üstün and H. Kurt, Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides, Opt. Express 18(20), 21155 (2010)
CrossRef ADS Google scholar
[16]
N. Matsuda, E. Kuramochi, H. Takesue, and M. Notomi, Dispersion and light transport characteristics of large-scale photonic-crystal coupled nanomicrocavity arrays, Opt. Lett. 39(8), 2290 (2014)
CrossRef ADS Google scholar
[17]
H. Kurt, M. Turduev, and I. H. Giden, Crescent shaped dielectric periodic structure for light manipulation, Opt. Express 20(7), 7184 (2012)
CrossRef ADS Google scholar
[18]
Y. Wan, Z. Cai, Q. Li, and X. S. Zhao, Simulation and fabrication of THz waveguides with silicon wafer by using eye-shaped pillars as building blocks, Appl. Phys. A 102(2), 373 (2011)
CrossRef ADS Google scholar
[19]
Y. Wan, K. Fu, C. H. Li, and M. J. Yun, Improving slow light effect in photonic crystal line-defect waveguide by using eye-shaped scatterers, Opt. Commun. 286, 192 (2013)
CrossRef ADS Google scholar
[20]
C. Li, R. Su, Y. Wang, and X. Zhang, Theoretical study of ultra-wideband slow light in dual-stub-coupled plasmonic waveguide, Opt. Commun. 377, 10 (2016)
CrossRef ADS Google scholar
[21]
N. Zhu, Y. Y. Li, C. C. Chen, and S. Yan, Slow light in dual-periodic photonic crystals based slotted-waveguide coupled cavity, Opt. Laser Technol. 83, 125 (2016)
CrossRef ADS Google scholar
[22]
Y. Wan, X. Ge, S. Xu, Y. Guo, and F. Yuan, Ultra-slow light effects in symmetric and asymmetric waveguide structures with moon-like scatterers, Front. Phys. 12(1), 124204 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(1413 KB)

Accesses

Citations

Detail

Sections
Recommended

/