Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states

Ahmed Farouk, J. Batle, M. Elhoseny, Mosayeb Naseri, Muzaffar Lone, Alex Fedorov, Majid Alkhambashi, Syed Hassan Ahmed, M. Abdel-Aty

PDF(14239 KB)
PDF(14239 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (2) : 130306. DOI: 10.1007/s11467-017-0717-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states

Author information +
History +

Abstract

Quantum communication provides an enormous advantage over its classical counterpart: security of communications based on the very principles of quantum mechanics. Researchers have proposed several approaches for user identity authentication via entanglement. Unfortunately, these protocols fail because an attacker can capture some of the particles in a transmitted sequence and send what is left to the receiver through a quantum channel. Subsequently, the attacker can restore some of the confidential messages, giving rise to the possibility of information leakage. Here we present a new robust General Nuser authentication protocol based on N-particle Greenberger–Horne–Zeilinger (GHZ) states, which makes eavesdropping detection more effective and secure, as compared to some current authentication protocols. The security analysis of our protocol for various kinds of attacks verifies that it is unconditionally secure, and that an attacker will not obtain any information about the transmitted key. Moreover, as the number of transferred key bits N becomes larger, while the number of users for transmitting the information is increased, the probability of effectively obtaining the transmitted authentication keys is reduced to zero.

Keywords

quantum communication / quantum cryptography / quantum authentication / entanglement

Cite this article

Download citation ▾
Ahmed Farouk, J. Batle, M. Elhoseny, Mosayeb Naseri, Muzaffar Lone, Alex Fedorov, Majid Alkhambashi, Syed Hassan Ahmed, M. Abdel-Aty. Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states. Front. Phys., 2018, 13(2): 130306 https://doi.org/10.1007/s11467-017-0717-3

References

[1]
C. H.Bennett and G.Brassard, Quantum cryptography: Public key distribution and coin tossing, Theor. Comput. Sci. 560, 7 (2014)
CrossRef ADS Google scholar
[2]
M.Nielsenand I.Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
[3]
G. H.Zeng, Quantum Cryptology, Beijing: Science Press, 2006
[4]
G.Assche, Quantum Cryptography and Secret-Key Distillation, Cambridge: Cambridge University Press, 2006
CrossRef ADS Google scholar
[5]
M. S.Sharbaf, Quantum Cryptography: A New Generation of Information Technology Security System, Sixth International Conference on Information Technology. Nevada, USA, IEEE, pp 1644–1648, April, 2009
CrossRef ADS Google scholar
[6]
W. K.Woottersand W. H.Zurek, A single quantum cannot be cloned, Nature299(5886), 802(1982)
CrossRef ADS Google scholar
[7]
A.Poppe, M.Peev, and O.Maurhart, Outline of the SECOQC quantum-key distribution network in Vienna, Int. J. Quant. Inf.06(02), 209(2008)
CrossRef ADS Google scholar
[8]
M.Peev, ., The SECOQC quantum key distribution network in Vienna, New J. Phys. 11(075001), 1367(2009)
CrossRef ADS Google scholar
[9]
C.Elliott, Building the quantum network, New J. Phys. 4, 46(2002)
CrossRef ADS Google scholar
[10]
C.Elliott, A.Colvin, D.Pearson, O.Pikalo, J.Schlafer, and H.Yeh, Current status of the DARPA quantum network, Quantum Information and Computation5815, 138(2005)
[11]
A. F.Metwaly, M. Z.Rashad, F. A.Omara, and A. A.Megahed, Architecture of multicast centralized key management scheme using quantum key distribution and classical symmetric encryption, Eur. Phys. J. Spec. Top. 223(8), 1711(2014)
CrossRef ADS Google scholar
[12]
A.Farouk, M.Zakaria, A.Megahed, and F. A.Omara, A generalized architecture of quantum secure direct communication for N disjointed users with authentication, Sci. Rep. 5(1), 16080(2015)
CrossRef ADS Google scholar
[13]
M.Naseri, M. A.Raji, M. R.Hantehzadeh, A.Farouk, A.Boochani, and S.Solaymani, A scheme for secure quantum communication network with authentication using GHZ-like states and cluster states controlled teleportation, Quantum Inform. Process. 14(11), 4279(2015)
CrossRef ADS Google scholar
[14]
K.Boströmand T.Felbinger, Deterministic Secure Direct Communication Using Entanglement, Phys. Rev. Lett. 89(18), 187902(2002)
CrossRef ADS Google scholar
[15]
F.Deng, G.Long, and X.Liu, Two-step quantum direct communication protocol using the Einstein–Podolsky– Rosen pair block, Phys. Rev. A68(4), 042317(2003)
CrossRef ADS Google scholar
[16]
M.Lucamariniand S.Mancini, Secure deterministic communication without entanglement, Phys. Rev. Lett.94(14), 140501(2005)
CrossRef ADS Google scholar
[17]
A.Zhu, Y.Xia, Q.Fan, and S.Zhang, Secure direct communication based on secret transmitting order of particles, Phys. Rev. A73(2), 022338(2006)
CrossRef ADS Google scholar
[18]
H.Lee, J.Lim, and H.Yang, Quantum direct communication with authentication, Phys. Rev. A73(4), 042305(2006)
CrossRef ADS Google scholar
[19]
T.Wang,Q.Wen, and F.Zhu, Controlled quantum secure direct communication with quantum encryption, Int. J. Quant. Inf.6, 543(2008)
CrossRef ADS Google scholar
[20]
C.Wang, F.Deng, Y.Li,X.Liu, and G.Long, Quantum secure direct communication with high dimension quantum superdense coding, Phys. Rev. A71(4), 044305(2005)
CrossRef ADS Google scholar
[21]
T.Gao, F. L.Yan, and Z. X.Wang, A simultaneous quantum secure direct communication scheme between the central party and other M parties, Chin. Phys. Lett.22(10), 2473(2005)
CrossRef ADS Google scholar
[22]
C.Wang, F.Deng, and G.Long, Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state, Opt. Commun.253(1–3), 15(2005)
CrossRef ADS Google scholar
[23]
J.Wang, Q.Zhang, and C.Tang, Quantum secure direct communication based on order rearrangement of single photons, Phys. Lett. A358(4), 256(2006)
CrossRef ADS Google scholar
[24]
C.Qing-Yu, and L.Bai-Wen, Deterministic secure communication without using entanglement, Chin. Phys. Lett.21(4), 601(2004)
CrossRef ADS Google scholar
[25]
Q. Y.Cai, Eavesdropping on the two-way quantum communication protocols with invisible photons, Phys. Lett. A351(1–2), 23(2006)
CrossRef ADS Google scholar
[26]
G. L.Long, F.Deng, C.Wang, X.Li, K.Wen, and W.Wang, Quantum secure direct communication and deterministic secure quantum communication, Front. Phys. China2(3), 251(2007)
CrossRef ADS Google scholar
[27]
G. Q.He, J.Zhu, and G.Zeng, Quantum secure communication using continuous variable EPR correlations, Phys. Rev. A73, 1 (2006)
CrossRef ADS Google scholar
[28]
Y.Chang, C.Xu, S.Zhang, and L.Yan, Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad, Chin. Sci. Bull.59(21), 2541(2014)
CrossRef ADS Google scholar
[29]
C.Yan, Z.Shi-Bin, and Y.Li-Li, A Bidirectional Quantum Secure Direct Communication Protocol Based on Five-Particle Cluster State, Chin. Phys. Lett. 30(9), 090301(2013)
CrossRef ADS Google scholar
[30]
W.Li, J.Chen, X.Wang, and C.Li, Quantum Secure Direct Communication Achieved by Using Multi- Entanglement, Int. J. Theor. Phys.54(1), 100(2015)
CrossRef ADS Google scholar
[31]
J.Wang, Q.Zhang, and C. J.Tang, Multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state, Opt. Commun.266(2), 732(2006)
CrossRef ADS Google scholar
[32]
X.- M.Xiu, L.Dong, Y.- J.Gao, and F.Chi, Quantum secure direct communication using six-particle maximally entangled states and teleportation, Commum. Theor. Phys.51(3), 429(2009)
CrossRef ADS Google scholar
[33]
P.Yadav, R.Srikanth, and A.Pathak, Twostep orthogonal-state-based protocol of quantum secure direct communication with the help of orderrearrangement technique, Quantum Inform. Process.13(12), 2731(2014)
CrossRef ADS Google scholar
[34]
X.Liand H.Barnum, Quantum authentication using entangled states, Int. J. Found. Comput. Sci.15(04), 609(2004)
CrossRef ADS Google scholar
[35]
N.Zhou, G.Zeng, W.Zeng, and F.Zhu, Cross-center quantum identification scheme based on teleportation and entanglement swapping, Opt. Commun. 254(4–6), 380(2005)
CrossRef ADS Google scholar
[36]
D. R.Kuhn, A quantum cryptographic protocol with detection of compromised server, Quantum Inf. Comput. 5(7), 551(2005)
[37]
X.Wen, Y.Liu, and N.Zhou, Secure quantum telephone, Opt. Commun.275(1), 278(2007)
CrossRef ADS Google scholar
[38]
M.Naseri, Eavesdropping on secure quantum telephone protocol with dishonest server, Opt. Commun. 282(16), 3375(2009)
CrossRef ADS Google scholar
[39]
Y.Sun, Q. Y.Wen, F.Gao, and F. C.Zhu, Improving the security of secure quantum telephone against an attack with fake particles and local operations, Opt. Commun. 282(11), 2278(2009)
CrossRef ADS Google scholar
[40]
D.Zhangand X.Li, Quantum authentication using orthogonal product states, in: Third International Conference on Natural Computation, ICNC2007, Vol. 4, pp 608–612, IEEE
CrossRef ADS Google scholar
[41]
B. S.Shi, J.Li, J. M.Liu, X. F.Fan, and G. C.Guo, Quantum key distribution and quantum authentication based on entangled state, Phys. Lett. A281(2–3), 83(2001)
CrossRef ADS Google scholar
[42]
T.Wei, C. W.Tsai, and T.Hwang, Comment on quantum key distribution and quantum authentication based on entangled state, Int. J. Theor. Phys. 50(9), 2703(2011)
CrossRef ADS Google scholar
[43]
P.Huang, J.Zhu, Y.Lu, and G. H.Zeng, Quantum identity authentication using Gaussian-modulated squeezed states,Int. J. Quant. Inf. 9(2), 701(2011)
CrossRef ADS Google scholar
[44]
C. W.Tsai, T. S.Wei, andT.Hwang, One-way quantum authenticated secure communication using rotation operation, Commum. Theor. Phys. 56(6), 1023(2011)
CrossRef ADS Google scholar
[45]
H. X.Ma, P.Huang, W. S.Bao, and G. H.Zeng, Continuous-variable quantum identity authentication based on quantum teleportation, Quantum Inform. Process. 15(6), 2605(2016)
CrossRef ADS Google scholar
[46]
N.Penghao, C.Yuan, and L.Chong, Quantum authentication scheme based on entanglement swapping, Int. J. Theor. Phys. 55(1), 302(2016)
CrossRef ADS Google scholar
[47]
M.Naseri, Revisiting quantum authentication scheme based on entanglement swapping, Int. J. Theor. Phys. 55(5), 2428(2016)
CrossRef ADS Google scholar
[48]
G. J.Simmons, Message Authentication without secrecy: A secure communications problem uniquely solvable by asymmetric encryption techniques, 12th IEEE Annual Electronics and Aerospace Conference, Washington, USA, IEEE, pp 661–662, December, 1979
[49]
G. J.Simmons, Authentication theory/coding theory, Advances in Cryptology–Proceedings of Crypto 84, Paris, France, 196, (pp 411–431), Heidelberg: Springer, 1984
[50]
A. S.Holevo, Statistical problems in quantum physics, in: Proceedings of the second Japan-USSR Symposiumon probability theory, 330, 104–119(1973)
CrossRef ADS Google scholar
[51]
A. S.Holevo, The capacity of the quantum channel with general signal states, IEEE Trans. Inf. Theory44(1), 269(1998)
CrossRef ADS Google scholar
[52]
A. K.Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett.67(6), 661(1991)
CrossRef ADS Google scholar
[53]
C. H.Bennett, G.Brassard, C.Crépeau,R.Jozsa, A.Peres, and W. K.Wootters,Teleporting an unknown quantum state via dual classical and Einstein– Podolsky–Rosen channels, Phys. Rev. Lett.70(13), 1895(1993)
CrossRef ADS Google scholar
[54]
F. G.Dengand G. L.Long, Bidirectional quantum key distribution protocol with practical faint laser pulses, Phys. Rev. A70(1), 012311(2004)
CrossRef ADS Google scholar
[55]
N.Gisinand S.Massar, Optimal quantum cloning machines, Phys. Rev. Lett. 79(11), 2153(1997)
CrossRef ADS Google scholar
[56]
A.Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77(8), 1413(1996)
CrossRef ADS Google scholar
[57]
F.Giraldiand P.Grigolini, Quantum entanglement and entropy, Phys. Rev. A64(3), 032310(2001)
CrossRef ADS Google scholar
[58]
D.Boschi,S.Branca, F.De Martini, L.Hardy, and S.Popescu, Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 80(6), 1121(1998)
CrossRef ADS Google scholar
[59]
M.Hillery, V.Bužek, and A.Berthiaume, Quantum secret sharing, Phys. Rev. A59(3), 1829(1999)
CrossRef ADS Google scholar
[60]
M. A.Nielsen, Conditions for a class of entanglement transformations, Phys. Rev. Lett. 83(2), 436(1999)
CrossRef ADS Google scholar
[61]
R. A.Bertlmannand A.Zeilinger(Eds.), Quantum (un) Speakables: From Bell to Quantum Information, Springer Science & Business Media2013
[62]
A.Aspect, J.Dalibard, and G.Roger, Experimental test of Bell’s inequalities using time-varying analyzers, Phys. Rev. Lett. 49(25), 1804(1982)
CrossRef ADS Google scholar
[63]
L. F.Wei, Y. X.Liu, M. J.Storcz, and F.Nori,Macroscopic Einstein–Podolsky–Rosen pairs in superconducting circuits, Phys. Rev. A73(5), 052307(2006)
CrossRef ADS Google scholar
[64]
J. S.Huang, C. H.Oh, and L. F.Wei, Testing tripartite Mermin inequalities by spectral joint measurements of qubits, Phys. Rev. A83(6), 062108(2011)
CrossRef ADS Google scholar
[65]
J.Uffink, Quadratic Bell inequalities as tests for multipartite entanglement, Phys. Rev. Lett. 88(23), 230406(2002)
CrossRef ADS Google scholar
[66]
Z.Zhao, Y. A.Chen, A. N.Zhang, T.Yang, H. J.Briegel, and J. W.Pan, Experimental demonstration of five-photon entanglement and open-destination teleportation, Nature430(6995), 54(2004)
CrossRef ADS Google scholar
[67]
D.Leibfried, E.Knill,S.Seidelin, J.Britton, R. B.Blakestad, J.Chiaverini, D. B.Hume,W. M.Itano, J. D.Jost, C.Langer, R.Ozeri, R.Reichle, and D. J.Wineland, Creation of a six-atom “Schrödinger cat” state, Nature438(7068), 639(2005)
CrossRef ADS Google scholar
[68]
C. Y.Lu, X. Q.Zhou, O.Gühne, W. B.Gao, J.Zhang, Z. S.Yuan, A.Goebel, T.Yang, and J. W.Pan, Experimental entanglement of six photons in graph states, Nat. Phys. 3(2), 91(2007)
[69]
Y.Xia, P.Lu, and Y.Zeng, Effective protocol for preparation of N-photon Greenberger–Horne–Zeilinger states with conventional photon detectors, Quantum Inform. Process. 11(2), 605(2012)
CrossRef ADS Google scholar
[70]
S. Y.Hao, Y.Xia, J.Song, and N. B.An, One-step generation of multiatom Greenberger–Horne–Zeilinger states in separate cavities via adiabatic passage, Journal of the Optical Society of America B30(2), 468(2013)
CrossRef ADS Google scholar
[71]
Y. F.Huang, B. H.Liu, L.Peng, Y. H.Li, L.Li, C. F.Li, and G. C.Guo, Experimental generation of an eightphoton Greenberger–Horne–Zeilinger state, Nat. Commun.2, 546(2011)
CrossRef ADS Google scholar
[72]
A.Metwaly, M. Z.Rashad, F. A.Omara, and A. A.Megahed, Architecture of Point to Multipoint QKD Communication Systems (QKDP2MP). In 8th International Conference on Informatics and Systems (INFOS), Cairo, pp NW 25–31, IEEE, May, 2012
[73]
A.Farouk, F.Omara, M.Zakria, and A.Megahed, Secured IPsec multicast architecture based on quantum key distribution, in: The International Conference on Electrical and Bio-medical Engineering, Clean Energy and Green Computing, pp 38–47(2015). The Society of Digital Information and Wireless Communication.
[74]
M. M.Wang, W.Wang, J. G.Chen, and A.Farouk, Secret sharing of a known arbitrary quantum state with noisy environment, Quantum Inform. Process. 14(11), 4211(2015)
CrossRef ADS Google scholar
[75]
M.Naseri, S.Heidari, M.Baghfalaki, N.Fatahi,R.Gheibi, J.Batle, A.Farouk, and A.Habibi, A new secure quantum watermarking scheme, Optik139, 77(2017)
CrossRef ADS Google scholar
[76]
J.Batle, O.Ciftja, M.Naseri, M.Ghoranneviss, A.Farouk, and M.Elhoseny, Equilibrium and uniform charge distribution of a classical two-dimensional system of point charges with hard-wall confinement, Phys. Scr.92(5), 055801(2017)
CrossRef ADS Google scholar
[77]
H.Geurdes, K.Nagata, T.Nakamura, and A.Farouk, A note on the possibility of incomplete theory, arXiv: 1704.00005 (2017)
[78]
J.Batle, A.Farouk, M.Alkhambashi, and S.Abdalla, Multipartite correlation degradation in amplitudedamping quantum channels, J. Korean Phys. Soc. 70(7), 666(2017)
CrossRef ADS Google scholar
[79]
J.Batle, M.Naseri, M.Ghoranneviss, A.Farouk, M.Alkhambashi, and M.Elhoseny, Shareability of correlations in multiqubit states: Optimization of nonlocal monogamy inequalities, Phys. Rev. A95(3), 032123(2017)
CrossRef ADS Google scholar
[80]
J.Batle, A.Farouk, M.Alkhambashi, and S.Abdalla, Entanglement in the linear-chain Heisenberg antiferromagnet Cu(C4H4N2)(NO3)2, Eur. Phys. J. B90(3), 49(2017)
CrossRef ADS Google scholar
[81]
J.Batle, M.Alkhambashi, A.Farouk, M.Naseri, and M.Ghoranneviss, Multipartite non-locality and entanglement signatures of a field-induced quantum phase transition, Eur. Phys. J. B90(2), 31(2017)
CrossRef ADS Google scholar
[82]
K.Nagata, T.Nakamura, J.Batle, S.Abdalla, and A.Farouk, Boolean approach to dichotomic quantum measurement theories, J. Korean Phys. Soc. 70(3), 229(2017)
CrossRef ADS Google scholar
[83]
M.Abdolmaleky, M.Naseri, J.Batle, A.Farouk, and L. H.Gong, Red–Green–Blue multi-channel quantum representation of digital images, Optik128, 121(2017)
CrossRef ADS Google scholar
[84]
A.Farouk, M.Elhoseny, J.Batle, M.Naseri, and A. E.Hassanien, A proposed architecture for key management schema in centralized quantum network, in: Handbook of Research on Machine Learning Innovations and Trends, pp 997–1021, IGI Global, 2017
CrossRef ADS Google scholar
[85]
N. R.Zhou, J. F.Li, Z. B.Yu, L. H.Gong, andA.Farouk, New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states, Quantum Inform. Process. 16(1), 4 (2017)
CrossRef ADS Google scholar
[86]
J.Batle, M.Abutalib, S.Abdalla, and A.Farouk, Persistence of quantum correlations in a XY spin-chain environment, Eur. Phys. J. B89(11), 247(2016)
CrossRef ADS Google scholar
[87]
J.Batle, M.Abutalib, S.Abdalla, and A.Farouk, Revival of Bell nonlocality across a quantum spin chain, Int. J. Quant. Inf. 14(07), 1650037(2016)
CrossRef ADS Google scholar
[88]
J.Batle, C. R.Ooi, A.Farouk, M.Abutalib, and S.Abdalla, Do multipartite correlations speed up adiabatic quantum computation or quantum annealing? Quantum Inform. Process. 15(8), 3081(2016)
CrossRef ADS Google scholar
[89]
J.Batle, A.Bagdasaryan, A.Farouk, M.Abutalib, and S.Abdalla, Quantum correlations in two coupled superconducting charge qubits, Int. J. Mod. Phys. B30(19), 1650123(2016)
CrossRef ADS Google scholar
[90]
J.Batle, C. R.Ooi, M.Abutalib, A.Farouk, and S.Abdalla, Quantum information approach to the azurite mineral frustrated quantum magnet, Quantum Inform. Process. 15(7), 2839(2016)
CrossRef ADS Google scholar
[91]
J.Batle, C. R.Ooi, A.Farouk, and S.Abdalla, Nonlocality in pure and mixed n-qubit X states, Quantum Inform. Process. 15(4), 1553(2016)
CrossRef ADS Google scholar
[92]
J.Batle, C. R.Ooi, A.Farouk, M.Abutalib, and S.Abdalla, Do multipartite correlations speed up adiabatic quantum computation or quantum annealing? Quantum Inform. Process. 15(8), 3081(2016)
CrossRef ADS Google scholar
[93]
A. F.Metwaly, M. Z.Rashad, F. A.Omara, and A. A.Megahed, Architecture of multicast network based on quantum secret sharing and measurement, International Research Journal of Engineering and Technology02(03), 2336(2015)

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(14239 KB)

Accesses

Citations

Detail

Sections
Recommended

/