Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states
Ahmed Farouk, J. Batle, M. Elhoseny, Mosayeb Naseri, Muzaffar Lone, Alex Fedorov, Majid Alkhambashi, Syed Hassan Ahmed, M. Abdel-Aty
Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states
Quantum communication provides an enormous advantage over its classical counterpart: security of communications based on the very principles of quantum mechanics. Researchers have proposed several approaches for user identity authentication via entanglement. Unfortunately, these protocols fail because an attacker can capture some of the particles in a transmitted sequence and send what is left to the receiver through a quantum channel. Subsequently, the attacker can restore some of the confidential messages, giving rise to the possibility of information leakage. Here we present a new robust General Nuser authentication protocol based on N-particle Greenberger–Horne–Zeilinger (GHZ) states, which makes eavesdropping detection more effective and secure, as compared to some current authentication protocols. The security analysis of our protocol for various kinds of attacks verifies that it is unconditionally secure, and that an attacker will not obtain any information about the transmitted key. Moreover, as the number of transferred key bits N becomes larger, while the number of users for transmitting the information is increased, the probability of effectively obtaining the transmitted authentication keys is reduced to zero.
quantum communication / quantum cryptography / quantum authentication / entanglement
[1] |
C. H.Bennett and G.Brassard, Quantum cryptography: Public key distribution and coin tossing, Theor. Comput. Sci. 560, 7 (2014)
CrossRef
ADS
Google scholar
|
[2] |
M.Nielsenand I.Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
|
[3] |
G. H.Zeng, Quantum Cryptology, Beijing: Science Press, 2006
|
[4] |
G.Assche, Quantum Cryptography and Secret-Key Distillation, Cambridge: Cambridge University Press, 2006
CrossRef
ADS
Google scholar
|
[5] |
M. S.Sharbaf, Quantum Cryptography: A New Generation of Information Technology Security System, Sixth International Conference on Information Technology. Nevada, USA, IEEE, pp 1644–1648, April, 2009
CrossRef
ADS
Google scholar
|
[6] |
W. K.Woottersand W. H.Zurek, A single quantum cannot be cloned, Nature299(5886), 802(1982)
CrossRef
ADS
Google scholar
|
[7] |
A.Poppe, M.Peev, and O.Maurhart, Outline of the SECOQC quantum-key distribution network in Vienna, Int. J. Quant. Inf.06(02), 209(2008)
CrossRef
ADS
Google scholar
|
[8] |
M.Peev,
CrossRef
ADS
Google scholar
|
[9] |
C.Elliott, Building the quantum network, New J. Phys. 4, 46(2002)
CrossRef
ADS
Google scholar
|
[10] |
C.Elliott, A.Colvin, D.Pearson, O.Pikalo, J.Schlafer, and H.Yeh, Current status of the DARPA quantum network, Quantum Information and Computation5815, 138(2005)
|
[11] |
A. F.Metwaly, M. Z.Rashad, F. A.Omara, and A. A.Megahed, Architecture of multicast centralized key management scheme using quantum key distribution and classical symmetric encryption, Eur. Phys. J. Spec. Top. 223(8), 1711(2014)
CrossRef
ADS
Google scholar
|
[12] |
A.Farouk, M.Zakaria, A.Megahed, and F. A.Omara, A generalized architecture of quantum secure direct communication for N disjointed users with authentication, Sci. Rep. 5(1), 16080(2015)
CrossRef
ADS
Google scholar
|
[13] |
M.Naseri, M. A.Raji, M. R.Hantehzadeh, A.Farouk, A.Boochani, and S.Solaymani, A scheme for secure quantum communication network with authentication using GHZ-like states and cluster states controlled teleportation, Quantum Inform. Process. 14(11), 4279(2015)
CrossRef
ADS
Google scholar
|
[14] |
K.Boströmand T.Felbinger, Deterministic Secure Direct Communication Using Entanglement, Phys. Rev. Lett. 89(18), 187902(2002)
CrossRef
ADS
Google scholar
|
[15] |
F.Deng, G.Long, and X.Liu, Two-step quantum direct communication protocol using the Einstein–Podolsky– Rosen pair block, Phys. Rev. A68(4), 042317(2003)
CrossRef
ADS
Google scholar
|
[16] |
M.Lucamariniand S.Mancini, Secure deterministic communication without entanglement, Phys. Rev. Lett.94(14), 140501(2005)
CrossRef
ADS
Google scholar
|
[17] |
A.Zhu, Y.Xia, Q.Fan, and S.Zhang, Secure direct communication based on secret transmitting order of particles, Phys. Rev. A73(2), 022338(2006)
CrossRef
ADS
Google scholar
|
[18] |
H.Lee, J.Lim, and H.Yang, Quantum direct communication with authentication, Phys. Rev. A73(4), 042305(2006)
CrossRef
ADS
Google scholar
|
[19] |
T.Wang,Q.Wen, and F.Zhu, Controlled quantum secure direct communication with quantum encryption, Int. J. Quant. Inf.6, 543(2008)
CrossRef
ADS
Google scholar
|
[20] |
C.Wang, F.Deng, Y.Li,X.Liu, and G.Long, Quantum secure direct communication with high dimension quantum superdense coding, Phys. Rev. A71(4), 044305(2005)
CrossRef
ADS
Google scholar
|
[21] |
T.Gao, F. L.Yan, and Z. X.Wang, A simultaneous quantum secure direct communication scheme between the central party and other M parties, Chin. Phys. Lett.22(10), 2473(2005)
CrossRef
ADS
Google scholar
|
[22] |
C.Wang, F.Deng, and G.Long, Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state, Opt. Commun.253(1–3), 15(2005)
CrossRef
ADS
Google scholar
|
[23] |
J.Wang, Q.Zhang, and C.Tang, Quantum secure direct communication based on order rearrangement of single photons, Phys. Lett. A358(4), 256(2006)
CrossRef
ADS
Google scholar
|
[24] |
C.Qing-Yu, and L.Bai-Wen, Deterministic secure communication without using entanglement, Chin. Phys. Lett.21(4), 601(2004)
CrossRef
ADS
Google scholar
|
[25] |
Q. Y.Cai, Eavesdropping on the two-way quantum communication protocols with invisible photons, Phys. Lett. A351(1–2), 23(2006)
CrossRef
ADS
Google scholar
|
[26] |
G. L.Long, F.Deng, C.Wang, X.Li, K.Wen, and W.Wang, Quantum secure direct communication and deterministic secure quantum communication, Front. Phys. China2(3), 251(2007)
CrossRef
ADS
Google scholar
|
[27] |
G. Q.He, J.Zhu, and G.Zeng, Quantum secure communication using continuous variable EPR correlations, Phys. Rev. A73, 1 (2006)
CrossRef
ADS
Google scholar
|
[28] |
Y.Chang, C.Xu, S.Zhang, and L.Yan, Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad, Chin. Sci. Bull.59(21), 2541(2014)
CrossRef
ADS
Google scholar
|
[29] |
C.Yan, Z.Shi-Bin, and Y.Li-Li, A Bidirectional Quantum Secure Direct Communication Protocol Based on Five-Particle Cluster State, Chin. Phys. Lett. 30(9), 090301(2013)
CrossRef
ADS
Google scholar
|
[30] |
W.Li, J.Chen, X.Wang, and C.Li, Quantum Secure Direct Communication Achieved by Using Multi- Entanglement, Int. J. Theor. Phys.54(1), 100(2015)
CrossRef
ADS
Google scholar
|
[31] |
J.Wang, Q.Zhang, and C. J.Tang, Multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state, Opt. Commun.266(2), 732(2006)
CrossRef
ADS
Google scholar
|
[32] |
X.- M.Xiu, L.Dong, Y.- J.Gao, and F.Chi, Quantum secure direct communication using six-particle maximally entangled states and teleportation, Commum. Theor. Phys.51(3), 429(2009)
CrossRef
ADS
Google scholar
|
[33] |
P.Yadav, R.Srikanth, and A.Pathak, Twostep orthogonal-state-based protocol of quantum secure direct communication with the help of orderrearrangement technique, Quantum Inform. Process.13(12), 2731(2014)
CrossRef
ADS
Google scholar
|
[34] |
X.Liand H.Barnum, Quantum authentication using entangled states, Int. J. Found. Comput. Sci.15(04), 609(2004)
CrossRef
ADS
Google scholar
|
[35] |
N.Zhou, G.Zeng, W.Zeng, and F.Zhu, Cross-center quantum identification scheme based on teleportation and entanglement swapping, Opt. Commun. 254(4–6), 380(2005)
CrossRef
ADS
Google scholar
|
[36] |
D. R.Kuhn, A quantum cryptographic protocol with detection of compromised server, Quantum Inf. Comput. 5(7), 551(2005)
|
[37] |
X.Wen, Y.Liu, and N.Zhou, Secure quantum telephone, Opt. Commun.275(1), 278(2007)
CrossRef
ADS
Google scholar
|
[38] |
M.Naseri, Eavesdropping on secure quantum telephone protocol with dishonest server, Opt. Commun. 282(16), 3375(2009)
CrossRef
ADS
Google scholar
|
[39] |
Y.Sun, Q. Y.Wen, F.Gao, and F. C.Zhu, Improving the security of secure quantum telephone against an attack with fake particles and local operations, Opt. Commun. 282(11), 2278(2009)
CrossRef
ADS
Google scholar
|
[40] |
D.Zhangand X.Li, Quantum authentication using orthogonal product states, in: Third International Conference on Natural Computation, ICNC2007, Vol. 4, pp 608–612, IEEE
CrossRef
ADS
Google scholar
|
[41] |
B. S.Shi, J.Li, J. M.Liu, X. F.Fan, and G. C.Guo, Quantum key distribution and quantum authentication based on entangled state, Phys. Lett. A281(2–3), 83(2001)
CrossRef
ADS
Google scholar
|
[42] |
T.Wei, C. W.Tsai, and T.Hwang, Comment on quantum key distribution and quantum authentication based on entangled state, Int. J. Theor. Phys. 50(9), 2703(2011)
CrossRef
ADS
Google scholar
|
[43] |
P.Huang, J.Zhu, Y.Lu, and G. H.Zeng, Quantum identity authentication using Gaussian-modulated squeezed states,Int. J. Quant. Inf. 9(2), 701(2011)
CrossRef
ADS
Google scholar
|
[44] |
C. W.Tsai, T. S.Wei, andT.Hwang, One-way quantum authenticated secure communication using rotation operation, Commum. Theor. Phys. 56(6), 1023(2011)
CrossRef
ADS
Google scholar
|
[45] |
H. X.Ma, P.Huang, W. S.Bao, and G. H.Zeng, Continuous-variable quantum identity authentication based on quantum teleportation, Quantum Inform. Process. 15(6), 2605(2016)
CrossRef
ADS
Google scholar
|
[46] |
N.Penghao, C.Yuan, and L.Chong, Quantum authentication scheme based on entanglement swapping, Int. J. Theor. Phys. 55(1), 302(2016)
CrossRef
ADS
Google scholar
|
[47] |
M.Naseri, Revisiting quantum authentication scheme based on entanglement swapping, Int. J. Theor. Phys. 55(5), 2428(2016)
CrossRef
ADS
Google scholar
|
[48] |
G. J.Simmons, Message Authentication without secrecy: A secure communications problem uniquely solvable by asymmetric encryption techniques, 12th IEEE Annual Electronics and Aerospace Conference, Washington, USA, IEEE, pp 661–662, December, 1979
|
[49] |
G. J.Simmons, Authentication theory/coding theory, Advances in Cryptology–Proceedings of Crypto 84, Paris, France, 196, (pp 411–431), Heidelberg: Springer, 1984
|
[50] |
A. S.Holevo, Statistical problems in quantum physics, in: Proceedings of the second Japan-USSR Symposiumon probability theory, 330, 104–119(1973)
CrossRef
ADS
Google scholar
|
[51] |
A. S.Holevo, The capacity of the quantum channel with general signal states, IEEE Trans. Inf. Theory44(1), 269(1998)
CrossRef
ADS
Google scholar
|
[52] |
A. K.Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett.67(6), 661(1991)
CrossRef
ADS
Google scholar
|
[53] |
C. H.Bennett, G.Brassard, C.Crépeau,R.Jozsa, A.Peres, and W. K.Wootters,Teleporting an unknown quantum state via dual classical and Einstein– Podolsky–Rosen channels, Phys. Rev. Lett.70(13), 1895(1993)
CrossRef
ADS
Google scholar
|
[54] |
F. G.Dengand G. L.Long, Bidirectional quantum key distribution protocol with practical faint laser pulses, Phys. Rev. A70(1), 012311(2004)
CrossRef
ADS
Google scholar
|
[55] |
N.Gisinand S.Massar, Optimal quantum cloning machines, Phys. Rev. Lett. 79(11), 2153(1997)
CrossRef
ADS
Google scholar
|
[56] |
A.Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77(8), 1413(1996)
CrossRef
ADS
Google scholar
|
[57] |
F.Giraldiand P.Grigolini, Quantum entanglement and entropy, Phys. Rev. A64(3), 032310(2001)
CrossRef
ADS
Google scholar
|
[58] |
D.Boschi,S.Branca, F.De Martini, L.Hardy, and S.Popescu, Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 80(6), 1121(1998)
CrossRef
ADS
Google scholar
|
[59] |
M.Hillery, V.Bužek, and A.Berthiaume, Quantum secret sharing, Phys. Rev. A59(3), 1829(1999)
CrossRef
ADS
Google scholar
|
[60] |
M. A.Nielsen, Conditions for a class of entanglement transformations, Phys. Rev. Lett. 83(2), 436(1999)
CrossRef
ADS
Google scholar
|
[61] |
R. A.Bertlmannand A.Zeilinger(Eds.), Quantum (un) Speakables: From Bell to Quantum Information, Springer Science & Business Media2013
|
[62] |
A.Aspect, J.Dalibard, and G.Roger, Experimental test of Bell’s inequalities using time-varying analyzers, Phys. Rev. Lett. 49(25), 1804(1982)
CrossRef
ADS
Google scholar
|
[63] |
L. F.Wei, Y. X.Liu, M. J.Storcz, and F.Nori,Macroscopic Einstein–Podolsky–Rosen pairs in superconducting circuits, Phys. Rev. A73(5), 052307(2006)
CrossRef
ADS
Google scholar
|
[64] |
J. S.Huang, C. H.Oh, and L. F.Wei, Testing tripartite Mermin inequalities by spectral joint measurements of qubits, Phys. Rev. A83(6), 062108(2011)
CrossRef
ADS
Google scholar
|
[65] |
J.Uffink, Quadratic Bell inequalities as tests for multipartite entanglement, Phys. Rev. Lett. 88(23), 230406(2002)
CrossRef
ADS
Google scholar
|
[66] |
Z.Zhao, Y. A.Chen, A. N.Zhang, T.Yang, H. J.Briegel, and J. W.Pan, Experimental demonstration of five-photon entanglement and open-destination teleportation, Nature430(6995), 54(2004)
CrossRef
ADS
Google scholar
|
[67] |
D.Leibfried, E.Knill,S.Seidelin, J.Britton, R. B.Blakestad, J.Chiaverini, D. B.Hume,W. M.Itano, J. D.Jost, C.Langer, R.Ozeri, R.Reichle, and D. J.Wineland, Creation of a six-atom “Schrödinger cat” state, Nature438(7068), 639(2005)
CrossRef
ADS
Google scholar
|
[68] |
C. Y.Lu, X. Q.Zhou, O.Gühne, W. B.Gao, J.Zhang, Z. S.Yuan, A.Goebel, T.Yang, and J. W.Pan, Experimental entanglement of six photons in graph states, Nat. Phys. 3(2), 91(2007)
|
[69] |
Y.Xia, P.Lu, and Y.Zeng, Effective protocol for preparation of N-photon Greenberger–Horne–Zeilinger states with conventional photon detectors, Quantum Inform. Process. 11(2), 605(2012)
CrossRef
ADS
Google scholar
|
[70] |
S. Y.Hao, Y.Xia, J.Song, and N. B.An, One-step generation of multiatom Greenberger–Horne–Zeilinger states in separate cavities via adiabatic passage, Journal of the Optical Society of America B30(2), 468(2013)
CrossRef
ADS
Google scholar
|
[71] |
Y. F.Huang, B. H.Liu, L.Peng, Y. H.Li, L.Li, C. F.Li, and G. C.Guo, Experimental generation of an eightphoton Greenberger–Horne–Zeilinger state, Nat. Commun.2, 546(2011)
CrossRef
ADS
Google scholar
|
[72] |
A.Metwaly, M. Z.Rashad, F. A.Omara, and A. A.Megahed, Architecture of Point to Multipoint QKD Communication Systems (QKDP2MP). In 8th International Conference on Informatics and Systems (INFOS), Cairo, pp NW 25–31, IEEE, May, 2012
|
[73] |
A.Farouk, F.Omara, M.Zakria, and A.Megahed, Secured IPsec multicast architecture based on quantum key distribution, in: The International Conference on Electrical and Bio-medical Engineering, Clean Energy and Green Computing, pp 38–47(2015). The Society of Digital Information and Wireless Communication.
|
[74] |
M. M.Wang, W.Wang, J. G.Chen, and A.Farouk, Secret sharing of a known arbitrary quantum state with noisy environment, Quantum Inform. Process. 14(11), 4211(2015)
CrossRef
ADS
Google scholar
|
[75] |
M.Naseri, S.Heidari, M.Baghfalaki, N.Fatahi,R.Gheibi, J.Batle, A.Farouk, and A.Habibi, A new secure quantum watermarking scheme, Optik139, 77(2017)
CrossRef
ADS
Google scholar
|
[76] |
J.Batle, O.Ciftja, M.Naseri, M.Ghoranneviss, A.Farouk, and M.Elhoseny, Equilibrium and uniform charge distribution of a classical two-dimensional system of point charges with hard-wall confinement, Phys. Scr.92(5), 055801(2017)
CrossRef
ADS
Google scholar
|
[77] |
H.Geurdes, K.Nagata, T.Nakamura, and A.Farouk, A note on the possibility of incomplete theory, arXiv: 1704.00005 (2017)
|
[78] |
J.Batle, A.Farouk, M.Alkhambashi, and S.Abdalla, Multipartite correlation degradation in amplitudedamping quantum channels, J. Korean Phys. Soc. 70(7), 666(2017)
CrossRef
ADS
Google scholar
|
[79] |
J.Batle, M.Naseri, M.Ghoranneviss, A.Farouk, M.Alkhambashi, and M.Elhoseny, Shareability of correlations in multiqubit states: Optimization of nonlocal monogamy inequalities, Phys. Rev. A95(3), 032123(2017)
CrossRef
ADS
Google scholar
|
[80] |
J.Batle, A.Farouk, M.Alkhambashi, and S.Abdalla, Entanglement in the linear-chain Heisenberg antiferromagnet Cu(C4H4N2)(NO3)2, Eur. Phys. J. B90(3), 49(2017)
CrossRef
ADS
Google scholar
|
[81] |
J.Batle, M.Alkhambashi, A.Farouk, M.Naseri, and M.Ghoranneviss, Multipartite non-locality and entanglement signatures of a field-induced quantum phase transition, Eur. Phys. J. B90(2), 31(2017)
CrossRef
ADS
Google scholar
|
[82] |
K.Nagata, T.Nakamura, J.Batle, S.Abdalla, and A.Farouk, Boolean approach to dichotomic quantum measurement theories, J. Korean Phys. Soc. 70(3), 229(2017)
CrossRef
ADS
Google scholar
|
[83] |
M.Abdolmaleky, M.Naseri, J.Batle, A.Farouk, and L. H.Gong, Red–Green–Blue multi-channel quantum representation of digital images, Optik128, 121(2017)
CrossRef
ADS
Google scholar
|
[84] |
A.Farouk, M.Elhoseny, J.Batle, M.Naseri, and A. E.Hassanien, A proposed architecture for key management schema in centralized quantum network, in: Handbook of Research on Machine Learning Innovations and Trends, pp 997–1021, IGI Global, 2017
CrossRef
ADS
Google scholar
|
[85] |
N. R.Zhou, J. F.Li, Z. B.Yu, L. H.Gong, andA.Farouk, New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states, Quantum Inform. Process. 16(1), 4 (2017)
CrossRef
ADS
Google scholar
|
[86] |
J.Batle, M.Abutalib, S.Abdalla, and A.Farouk, Persistence of quantum correlations in a XY spin-chain environment, Eur. Phys. J. B89(11), 247(2016)
CrossRef
ADS
Google scholar
|
[87] |
J.Batle, M.Abutalib, S.Abdalla, and A.Farouk, Revival of Bell nonlocality across a quantum spin chain, Int. J. Quant. Inf. 14(07), 1650037(2016)
CrossRef
ADS
Google scholar
|
[88] |
J.Batle, C. R.Ooi, A.Farouk, M.Abutalib, and S.Abdalla, Do multipartite correlations speed up adiabatic quantum computation or quantum annealing? Quantum Inform. Process. 15(8), 3081(2016)
CrossRef
ADS
Google scholar
|
[89] |
J.Batle, A.Bagdasaryan, A.Farouk, M.Abutalib, and S.Abdalla, Quantum correlations in two coupled superconducting charge qubits, Int. J. Mod. Phys. B30(19), 1650123(2016)
CrossRef
ADS
Google scholar
|
[90] |
J.Batle, C. R.Ooi, M.Abutalib, A.Farouk, and S.Abdalla, Quantum information approach to the azurite mineral frustrated quantum magnet, Quantum Inform. Process. 15(7), 2839(2016)
CrossRef
ADS
Google scholar
|
[91] |
J.Batle, C. R.Ooi, A.Farouk, and S.Abdalla, Nonlocality in pure and mixed n-qubit X states, Quantum Inform. Process. 15(4), 1553(2016)
CrossRef
ADS
Google scholar
|
[92] |
J.Batle, C. R.Ooi, A.Farouk, M.Abutalib, and S.Abdalla, Do multipartite correlations speed up adiabatic quantum computation or quantum annealing? Quantum Inform. Process. 15(8), 3081(2016)
CrossRef
ADS
Google scholar
|
[93] |
A. F.Metwaly, M. Z.Rashad, F. A.Omara, and A. A.Megahed, Architecture of multicast network based on quantum secret sharing and measurement, International Research Journal of Engineering and Technology02(03), 2336(2015)
|
/
〈 | 〉 |