Tunable near- to mid-infrared pump terahertz probe spectroscopy in reflection geometry

S. J. Zhang, Z. X. Wang, T. Dong, N. L. Wang

Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 127802.

PDF(2285 KB)
Front. Phys. All Journals
PDF(2285 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 127802. DOI: 10.1007/s11467-017-0716-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Tunable near- to mid-infrared pump terahertz probe spectroscopy in reflection geometry

Author information +
History +

Abstract

Strong-field mid-infrared pump–terahertz (THz) probe spectroscopy has been proven as a powerful tool for light control of different orders in strongly correlated materials. We report the construction of an ultrafast broadband infrared pump–THz probe system in reflection geometry. A two-output optical parametric amplifier is used for generating mid-infrared pulses with GaSe as the nonlinear crystal. The setup is capable of pumping bulk materials at wavelengths ranging from 1.2 m to 15 m and beyond, and detecting the subtle, transient photoinduced changes in the reflected electric field of the THz probe at different temperatures. As a demonstration, we present 15 m pump–THz probe measurements of a bulk EuSbTe3 single crystal. A 0:5% transient change in the reflected THz electric field can be clearly resolved. The widely tuned pumping energy could be used in mode-selective excitation experiments and applied to many strongly correlated electron systems.

Keywords

mid-infrared pump / terahertz spectroscopy

Cite this article

Download citation ▾
S. J. Zhang, Z. X. Wang, T. Dong, N. L. Wang. Tunable near- to mid-infrared pump terahertz probe spectroscopy in reflection geometry. Front. Phys., 2017, 12(5): 127802 https://doi.org/10.1007/s11467-017-0716-4
This is a preview of subscription content, contact us for subscripton.

References

[1]
S. G.Han, Z. V.Vardeny, K. S.Wong, O. G.Symko, and G.Koren, Femtosecond optical detection of quasiparticle dynamics in high-Tc YBa2Cu3O7−δ superconducting thin films, Phys. Rev. Lett. 65(21), 2708 (1990)
CrossRef ADS Google scholar
[2]
G. L.Eesley, J.Heremans, M. S.Meyer, G. L.Doll, and S. H.Liou, Relaxation time of the order parameter in a high-temperature superconductor,Phys. Rev. Lett. 65(27), 3445(1990)
CrossRef ADS Google scholar
[3]
S.Iwai, M.Ono, A.Maeda, H.Matsuzaki, H.Kishida, H.Okamoto, and Y.Tokura, Ultrafast optical switching to a metallic state by photoinduced Mott transition in a halogen-bridged nickel-chain compound, Phys. Rev. Lett. 91(5), 057401(2003)
CrossRef ADS Google scholar
[4]
R. I.Tobey, S.Wall, M.Först, H.Bromberger, V.Khanna, J. J.Turner, W.Schlotter, M.Trigo, O.Krupin, W. S.Lee, Y. D.Chuang,R.Moore, A. L.Cavalieri, S. B.Wilkins, H.Zheng,J. F.Mitchell, S. S.Dhesi, A.Cavalleri, and J. P.Hill, Evolution of threedimensional correlations during the photoinduced melting of antiferromagnetic order in La0.5Sr1.5MnO4, Phys. Rev. B86(6), 064425(2012)
CrossRef ADS Google scholar
[5]
M.Porer, U.Leierseder, J. M.Ménard, H.Dachraoui, L.Mouchliadis, I. E.Perakis, U.Heinzmann, J.Demsar, K.Rossnagel, and R.Huber, Non-thermal separation of electronic and structural orders in a persisting charge density wave, Nat. Mater. 13(9), 857(2014)
CrossRef ADS Google scholar
[6]
M. C.Hoffmannand J. A.Fülöp, Intense ultrashort terahertz pulses: Generation and applications, J. Phys. D Appl. Phys. 44(8), 083001(2011)
CrossRef ADS Google scholar
[7]
D.Fausti, R. I.Tobey, N.Dean, S.Kaiser, A.Dienst, M. C.Hoffmann, S.Pyon, T.Takayama, H.Takagi, and A.Cavalleri, Light-induced superconductivity in a stripe-ordered cuprate, Science331(6014), 189(2011)
CrossRef ADS Google scholar
[8]
A.Dienst, E.Casandruc, D.Fausti, L.Zhang, M.Eckstein, M.Hoffmann, V.Khanna,N.Dean, M.Gensch, S.Winnerl, W.Seidel, S.Pyon, T.Takayama, H.Takagi, and A.Cavalleri, Optical excitation of Josephson plasma solitons in a cuprate superconductor, Nat. Mater. 12(6), 535(2013)
CrossRef ADS Google scholar
[9]
W.Hu, S.Kaiser, D.Nicoletti, C. R.Hunt, I.Gierz, M. C.Hoffmann, M.Le Tacon, T.Loew, B.Keimer, and A.Cavalleri, Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling, Nat. Mater. 13(7), 705(2014)
CrossRef ADS Google scholar
[10]
D.Nicolettiand A.Cavalleri, Nonlinear light–matter interaction at terahertz frequencies, Adv. Opt. Photonics8(3), 401(2016)
CrossRef ADS Google scholar
[11]
D. N.Basov, R. D.Averitt, D.Van Der Marel, M.Dressel, and K.Haule, Electrodynamics of correlated electron materials, Rev. Mod. Phys. 83(2), 471(2011)
CrossRef ADS Google scholar
[12]
S.Kaiser, C. R.Hunt, D.Nicoletti, W.Hu, I.Gierz, H. Y.Liu, M.Le Tacon, T.Loew, D.Haug, B.Keimer, and A.Cavalleri, Optically induced coherent transport far above Tc in underdoped YBa2Cu3O6+δ, Phys. Rev. B89(18), 184516(2014)
CrossRef ADS Google scholar
[13]
W.Shi, Y. J.Ding, N.Fernelius, and K.Vodopyanov, Efficient, tunable, and coherent 0.18–5.27 THz source based on GaSe crystal, Opt. Lett. 27(16), 1454(2002)
CrossRef ADS Google scholar
[14]
R.Huber, A.Brodschelm, F.Tauser, and A.Leitenstorfer, Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz, Appl. Phys. Lett. 76(22), 3191(2000)
CrossRef ADS Google scholar
[15]
K.Reimann, R.Smith, A.Weiner, T.Elsaesser, and M.Woerner, Direct field-resolved detection of terahertz transients with amplitudes of megavolts per centimeter, Opt. Lett. 28(6), 471(2003)
CrossRef ADS Google scholar
[16]
A.Sell, A.Leitenstorfer, and R.Huber, Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm, Opt. Lett. 33(23), 2767(2008)
CrossRef ADS Google scholar
[17]
K.Liu,J.Xu, and X. C.Zhang, GaSe crystals for broadband terahertz wave detection, Appl. Phys. Lett. 85(6), 863(2004)
CrossRef ADS Google scholar
[18]
C.Kübler, R.Huber, S.Tübel, and A.Leitenstorfer, Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: Approaching the near infrared, Appl. Phys. Lett. 85(16), 3360(2004)
CrossRef ADS Google scholar
[19]
A.Rice, Y.Jin, X. F.Ma, X. C.Zhang, D.Bliss, J.Larkin, and M.Alexander, Terahertz optical rectification from ⟨110⟩ zinc-blende crystals, Appl. Phys. Lett. 64(11), 1324(1994)
CrossRef ADS Google scholar
[20]
Q.Wuand X. C.Zhang, Free-space electro-optics sampling of mid-infrared pulses, Appl. Phys. Lett. 71(10), 1285(1997)
CrossRef ADS Google scholar
[21]
Y. Y.Niu, D.Wu, L.Shen, and B.Wang, A layered antiferromagnetic semiconductor EuMTe3 (M= Bi, Sb), Phys. Status Solidi Rapid Res. Lett. 9(12), 735(2015)
CrossRef ADS Google scholar
[22]
M.Van Exter, C.Fattinger, and D.Grischkowsky, Terahertz time-domain spectroscopy of water vapor, Opt. Lett. 14(20), 1128(1989)
CrossRef ADS Google scholar
[23]
Y.Yang, A.Shutler, and D.Grischkowsky, Measurement of the transmission of the atmosphere from 0.2 to 2 THz, Opt. Express19(9), 8830(2011)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. This article is published with open access at www.springer.com/11467 and journal.hep.com.cn/fop
AI Summary AI Mindmap
PDF(2285 KB)

Accesses

Citations

Detail

Sections
Recommended

/