Fragile to strong crossover and Widom line in supercooled water: A comparative study

Margherita De Marzio, Gaia Camisasca, Mauro Rovere, Paola Gallo

Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 136103.

PDF(444 KB)
PDF(444 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 136103. DOI: 10.1007/s11467-017-0714-6
REVIEW ARTICLE
REVIEW ARTICLE

Fragile to strong crossover and Widom line in supercooled water: A comparative study

Author information +
History +

Abstract

The aim of this paper is to discuss the relationship between the dynamics and thermodynamics of water in the supercooled region. Reviewed case studies comprehend bulk water simulated with the SPC/E, TIP4P and TIP4P/2005 potentials, water at protein interfaces, and water in solution with electrolytes. Upon supercooling, the fragile to strong crossover in the-relaxation of water is found to occur when the Widom line emanating from the liquid-liquid critical point is crossed. This appears to be a general characteristic of supercooled water, not depending on the applied interaction potential and/or different local environments.

Keywords

molecular dynamics simulation / supercooled water / slow dynamics / hydration water / aqueous solutions

Cite this article

Download citation ▾
Margherita De Marzio, Gaia Camisasca, Mauro Rovere, Paola Gallo. Fragile to strong crossover and Widom line in supercooled water: A comparative study. Front. Phys., 2018, 13(1): 136103 https://doi.org/10.1007/s11467-017-0714-6

References

[1]
P. Gallo, K. Amann-Winkel, C. A. Angell, M. A. Anisimov, F. Caupin, C. Chakravarty, E. Lascaris, T. Loerting, A. Z. Panagiotopoulos, J. Russo, J. A. Sellberg, H. E. Stanley, H. Tanaka, C. Vega, L. Xu, and G. M. P. Lars, Water: A tale of two liquids, Chem. Rev. 116(13), 7463 (2016)
CrossRef ADS Google scholar
[2]
P. Ball, Water- An enduring mystery, Nature 452(7185), 291 (2008)
CrossRef ADS Google scholar
[3]
P. G. Debenedetti, Supercooled and glassy water, J. Phys.: Condens. Matter 15(45), R1669 (2003)
CrossRef ADS Google scholar
[4]
C. A. Angell, R. D. Bressel, M. Hemmati, E. J. Sare, and J. C. Tucker, Water and its anomalies in perspective: Tetrahedral liquids with and without liquid-liquid phase transitions, Phys. Chem. Chem. Phys. 2(8), 1559 (2000)
CrossRef ADS Google scholar
[5]
P. G. Debenedetti, Metastable Liquids: Concepts and Principles, Princeton: Princeton University Press, 1996
[6]
A. Sakai, T. Matsumoto, D. Hirai, and T. Niino, Newly developed encapsulation-dehydration protocol for plantcryopreservation, Cryo Lett. 21(1), 53 (1999)
[7]
W. Kauzmann, Some factors in the interpretation of protein denaturation, Adv. Protein Chem. 14, 1 (1959)
CrossRef ADS Google scholar
[8]
F. Franks, Water: A Matrix of Life, RSC Paperbacks, 2nd edition, Cambridge, UK: The Royal Society of Chemistry, 2000
[9]
P. G. Debenedetti and H. E. Stanley, Supercooled and glassy water, Phys. Today 56(6), 40 (2003)
CrossRef ADS Google scholar
[10]
C. A. Angell, J. Shuppert, and J. C. Tucker, Anomalous properties of supercooled water. Heat capacity, expansivity, and proton magnetic resonance chemical shift from 0 to -38%, J. Phys. Chem. 77(26), 3092 (1973)
CrossRef ADS Google scholar
[11]
R. J. Speedy and C. A. Angell, Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at -45 ◦C, J. Chem. Phys. 65(3), 851 (1976)
CrossRef ADS Google scholar
[12]
O. Mishima and H. E. Stanley, The relationship between liquid, supercooled and glassy water, Nature 396(6709), 329 (1998)
CrossRef ADS Google scholar
[13]
P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Phase behaviour of metastable water, Nature 360(6402), 324 (1992)
CrossRef ADS Google scholar
[14]
K. Winkel, M. S. Elsaesser, E. Mayer, and T. Loerting, Water polyamorphism: Reversibility and (dis) continuity, J. Chem. Phys. 128(4), 044510 (2008)
CrossRef ADS Google scholar
[15]
O. Mishima and H. E. Stanley, Decompression-induced melting of ice IV and the liquid-liquid transition in water, Nature 392(6672), 164 (1998)
CrossRef ADS Google scholar
[16]
O. Mishima, L. D. Calvert, and E. Whalley, An apparently first-order transition between two amorphous phases of ice induced by pressure, Nature 314(6006), 76 (1985)
CrossRef ADS Google scholar
[17]
K. Winkel, E. Mayer, and T. Loerting, Equilibrated high-density amorphous ice and its first-order transition to the low-density form, J. Phys. Chem. B 115(48), 14141 (2011)
CrossRef ADS Google scholar
[18]
C. U. Kim, B. Barstow, M. V. Tate, and S. M. Gruner, Evidence for liquid water during the high-density to lowdensity amorphous ice transition, Proc. Natl. Acad. Sci. USA 106(12), 4596 (2009)
CrossRef ADS Google scholar
[19]
G. Franzese and H. E. Stanley, The widom line of supercooled water, J. Phys.: Condens. Matter 19(20), 205126 (2007)
CrossRef ADS Google scholar
[20]
L. Xu, P. Kumar, S. V. Buldyrev, S. H. Chen, P. H. Poole, F. Sciortino, and H. E. Stanley, Relation between the Widom line and the dynamic crossover in systems with a liquid-liquid phase transition, Proc. Natl. Acad. Sci. USA 102(46), 16558 (2005)
CrossRef ADS Google scholar
[21]
D. Corradini, M. Rovere, and P. Gallo, A route to explain water anomalies from results on an aqueous solution of salt, J. Chem. Phys. 132(13), 134508 (2010)
CrossRef ADS Google scholar
[22]
J. L. F. Abascal and C. Vega, Widom line and the liquidliquid critical point for the TIP4P/2005 water model, J. Chem. Phys. 133(23), 234502 (2010)
CrossRef ADS Google scholar
[23]
P. Gallo, F. Sciortino, P. Tartaglia, and S. H. Chen, Slow dynamics of water molecules in supercooled states, Phys. Rev. Lett. 76(15), 2730 (1996)
CrossRef ADS Google scholar
[24]
F. Sciortino, P. Gallo, P. Tartaglia, and S. H. Chen, Supercooled water and the kinetic glass transition, Phys. Rev. E 54(6), 6331 (1996)
CrossRef ADS Google scholar
[25]
W. Gotze and L. Sjogren, Relaxation processes in supercooled liquids, Rep. Prog. Phys. 55(3), 241 (1992)
CrossRef ADS Google scholar
[26]
W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory, Oxford: Oxford University Press, 2009
[27]
P. Gallo and M. Rovere, Mode coupling and fragile to strong transition in supercooled TIP4P water,J. Chem. Phys. 137(16), 164503 (2012)
CrossRef ADS Google scholar
[28]
P. Gallo, D. Corradini, and M. Rovere, Fragile to strong crossover at the Widom line in supercooled aqueous solutions of NaCl, J. Chem. Phys. 139(20), 204503 (2013)
CrossRef ADS Google scholar
[29]
P. Gallo, M. Rovere, and E. Spohr, Supercooled confined water and the mode coupling crossover temperature, Phys. Rev. Lett. 85(20), 4317 (2000)
CrossRef ADS Google scholar
[30]
P. Gallo, M. Rovere, and E. Spohr, Glass transition and layering effects in confined water: A computer simulation study, J. Chem. Phys. 113(24), 11324 (2000)
CrossRef ADS Google scholar
[31]
P. Gallo, M. Rovere, and S. H. Chen, Dynamic crossover in supercooled confined water: Understanding bulk properties through confinement, J. Phys. Chem. Lett. 1(4), 729 (2010)
CrossRef ADS Google scholar
[32]
P. Gallo, M. Rovere, and S. H. Chen, Water confined in MCM-41: A mode coupling theory analysis, J. Phys.: Condens. Matter 24(6), 064109 (2012)
CrossRef ADS Google scholar
[33]
M. De Marzio, G. Camisasca, M. Rovere, and P. Gallo, Mode coupling theory and fragile to strong transition in supercooled TIP4P/2005 water, J. Chem. Phys. 144(7), 074503 (2016)
CrossRef ADS Google scholar
[34]
A. Dehaoui, B. Issenmann, and F. Caupin, Viscosity of deeply supercooled water and its coupling to molecular diffusion, Proc. Natl. Acad. Sci. USA 112(39), 12020 (2015)
CrossRef ADS Google scholar
[35]
R. Torre, P. Bartolini, and R. Righini, Structural relaxation in supercooled water by time-resolved spectroscopy, Nature 428(6980), 296 (2004)
CrossRef ADS Google scholar
[36]
F. W. Starr, F. Sciortino, and H. E. Stanley, Dynamics of simulated water under pressure, Phys. Rev. E 60(6), 6757 (1999)
CrossRef ADS Google scholar
[37]
A. Faraone, L. Liu, C. Y. Mou, C. W. Yen, and S. H. Chen, Fragile-to- strong liquid transition in deeply supercooled confined water, J. Chem. Phys. 121(22), 10843 (2004)
CrossRef ADS Google scholar
[38]
L. Liu, S. H. Chen, A. Faraone, C. W. Yen, and C. Y. Mou, Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water, Phys. Rev. Lett. 95(11), 117802 (2005)
CrossRef ADS Google scholar
[39]
F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, U. Wanderlingh, L. Liu, C. Y. Mou, and S. H. Chen, The fragile-to-strong dynamic crossover transition in confined water: nuclear magnetic resonance results, J. Chem. Phys. 124(16), 161102 (2006)
CrossRef ADS Google scholar
[40]
Y. Zhang, M. Lagi, E. Fratini, P. Baglioni, E. Mamontov, and S. H. Chen, Dynamic susceptibility of supercooled water and its relation to the dynamic crossover phenomenon, Phys. Rev. E 79(4), 040201 (2009)
CrossRef ADS Google scholar
[41]
L. Liu, S. H. Chen, A. Faraone, C.W. Yen, C. Y. Mou, A. I. Kolesnikov, E. Mamontov, and J. Leao, Quasielastic and inelastic neutron scattering investigation of fragile-to-strong crossover in deeply supercooled water confined in nanoporous silica matrices, J. Phys.: Condens. Matter 18(36), S2261 (2006)
CrossRef ADS Google scholar
[42]
Z. Wang, P. Le, K. Ito, J. B. Leão, M. Tyagi, and S. H. Chen, Dynamic crossover in deeply cooled water confined in mcm-41 at 4 kbar and its relation to the liquidliquid transition hypothesis, J. Chem. Phys. 143(11), 114508 (2015)
CrossRef ADS Google scholar
[43]
Y. Xu, N. G. Petrik, R. S. Smith, B. D. Kay, and G. A. Kimmel, Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K, Proc. Natl. Acad. Sci. USA 113(52), 14921 (2016)
CrossRef ADS Google scholar
[44]
J. M. Zanotti, M. C. Bellissent-Funel, and S. H. Chen, Relaxational dynamics of supercooled water in porous glass, Phys. Rev. E 59(3), 3084 (1999)
CrossRef ADS Google scholar
[45]
P. Gallo, M. Rovere, and S. H. Chen, Anomalous dynamics of water confined in MCM-41 at different hydrations, J. Phys.: Condens. Matter 22(28), 284102 (2010)
CrossRef ADS Google scholar
[46]
W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79(2), 926 (1983)
CrossRef ADS Google scholar
[47]
J. L. F. Abascal and C. Vega, A general purpose model for the condensed phases of water: TIP4P/2005, J. Chem. Phys. 123(23), 234505 (2005)
CrossRef ADS Google scholar
[48]
G. Camisasca, M. De Marzio, D. Corradini, and P. Gallo, Two structural relaxations in protein hydration water and their dynamic crossovers, J. Chem. Phys. 145(4), 044503 (2016)
CrossRef ADS Google scholar
[49]
J. C. Herman,Berendsen, J. R. Grigera, and T. P. Straatsma. The missing term in effective pair potentials, J. Phys. Chem. 91(24), 6269 (1987)
CrossRef ADS Google scholar
[50]
A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus, All-atom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. B 102(18), 3586 (1998)
CrossRef ADS Google scholar
[51]
A. D. MacKerell, M. Feig, and C. L. Brooks, Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations, J. Comput. Chem. 25(11), 1400 (2004)
CrossRef ADS Google scholar
[52]
A. Scala, F. W. Starr, E. La Nave, H. E. Stanley, and F. Sciortino, Free energy surface of supercooled water, Phys. Rev. E 62(6), 8016 (2000)
CrossRef ADS Google scholar
[53]
D. Corradini and P. Gallo, Liquid-liquid coexistence in nacl aqueous solutions: a simulation study of concentration effects, J. Phys. Chem. B 115, 1461 (2011)
CrossRef ADS Google scholar
[54]
D. Corradini, M. Rovere, and P. Gallo, Structural properties of high and low density water in a supercooled aqueous solution of salt, J. Phys. Chem. B 115(6), 1461 (2011)
CrossRef ADS Google scholar
[55]
C. Vega, J. L. F. Abascal, M. M. Conde, and J. L. Aragones, What ice can teach us about water interactions: A critical comparison of the performance of different water models, Faraday Discuss. 141, 251 (2009)
CrossRef ADS Google scholar
[56]
K. P. Jensen and W. L. Jorgensen, Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions, J. Chem. Theory Comput. 2(6), 1499 (2006)
CrossRef ADS Google scholar
[57]
A. Magno and P. Gallo, Understanding the Mechanisms of Bioprotection: A Comparative Study of Aqueous Solutions of Trehalose and Maltose upon Supercooling, J. Phys. Chem. Lett. 2(9), 977 (2011)
CrossRef ADS Google scholar
[58]
D. Corradini, E. G. Strekalova, H. E. Stanley, and P. Gallo, Microscopic mechanism of protein cryopreservation in an aqueous solution with trehalose, Sci. Rep. 3(1), 1218 (2013)
CrossRef ADS Google scholar
[59]
P. Kumar, Z. Yan, Limei Xu, M. G. Mazza, S. V. Buldyrev, S. H. Chen, S. Sastry, and H. E. Stanley, Glass transition in biomolecules and the liquid-liquid critical point of water, Phys. Rev. Lett. 97(17), 177802 (2006)
CrossRef ADS Google scholar
[60]
S. H. Chen, L. Liu, E. Fratini, P. Baglioni, A. Faraone, E. Mamontov, and M. Fomina, Observation of fragileto- strong dynamic crossover in protein hydration water, Proc. Natl. Acad. Sci. USA 103(24), 9012 (2006)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(444 KB)

Accesses

Citations

Detail

Sections
Recommended

/