Cavity control as a new quantum algorithms implementation treatment
M. AbuGhanem, A. H. Homid, M. Abdel-Aty
Cavity control as a new quantum algorithms implementation treatment
Based on recent experiments [Nature 449, 438 (2007) and Nature Physics 6, 777 (2010)], a new approach for realizing quantum gates for the design of quantum algorithms was developed. Accordingly, the operation times of such gates while functioning in algorithm applications depend on the number of photons present in their resonant cavities. Multi-qubit algorithms can be realized in systems in which the photon number is increased slightly over the qubit number. In addition, the time required for operation is considerably less than the dephasing and relaxation times of the systems. The contextual use of the photon number as a main control in the realization of any algorithm was demonstrated. The results indicate the possibility of a full integration into the realization of multi-qubit multiphoton states and its application in algorithm designs. Furthermore, this approach will lead to a successful implementation of these designs in future experiments.
quantum computation / quantum algorithms implementation / cavity control
[1] |
A. M.Turing, On computable numbers, with an application to the Entscheidungsproblem, Proc. Lond. Math. Soc. s2–42(1), 230 (1937)
|
[2] |
R. P.Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21(6–7), 467(1982)
CrossRef
ADS
Google scholar
|
[3] |
P.Benioff, Quantum mechanical models of Turing machines that dissipate no energy, Phys. Rev. Lett. 48(23), 1581(1982)
CrossRef
ADS
Google scholar
|
[4] |
D.Deutsch, Quantum theory, the Church-Turing Principle and the universal quantum computer, Proc. R. Soc. Lond. A400(1818), 97(1985)
|
[5] |
D.Deutsch, Quantum computational networks, Proc. R. Soc. Lond. A425(1868), 73(1989)
|
[6] |
D. P.DiVincenzo, Quantum computation, Science270(5234), 255(1995)
CrossRef
ADS
Google scholar
|
[7] |
D. P.DiVincenzo, The physical implementation of quantum computation, Fortschr. Phys. 48(9–11), 771(2000)
CrossRef
ADS
Google scholar
|
[8] |
M.Nakahara, S.Kanemitsu, M. M.Salomaa, and S.Takagi(Eds.), Physical Realization of Quantum Computing: Are the DiVincenzo Criteria Fulfilled in 2004? Singapore: World Scientific, 2006
CrossRef
ADS
Google scholar
|
[9] |
L. M. K.Vandersypenand I. L.Chuang, NMR techniques for quantum control and computation, Rev. Mod. Phys. 76(4), 1037(2005)
CrossRef
ADS
Google scholar
|
[10] |
E. L.Raab, M.Prentiss, A.Cable, S.Chu, and D. E.Pritchard, Trapping of neutral sodium atoms with radiation pressure, Phys. Rev. Lett. 59(23), 2631(1987)
CrossRef
ADS
Google scholar
|
[11] |
G.Wendinand V. S.Shumeiko, Superconducting quantum circuits, qubits and computing, arXiv: condmat/ 0508729 (2005)
|
[12] |
B. D.Josephson, Possible new effects in superconductive tunnelling, Phys. Lett. 1(7), 251(1962)
CrossRef
ADS
Google scholar
|
[13] |
B. D.Josephson, The discovery of tunnelling supercurrents, Rev. Mod. Phys. 46(2), 251(1974)
CrossRef
ADS
Google scholar
|
[14] |
U.Meirav, M. A.Kastner, and S. J.Wind, Singleelectron charging and periodic conductance resonances in GaAs nanostructures, Phys. Rev. Lett.65(6), 771(1990)
CrossRef
ADS
Google scholar
|
[15] |
O.Gamel, H.Chan, G.Fleming, and K. B.Whaley, Fully quantum analysis of photosynthetic coherent energy absorption and transfer, Bull. Am. Phys. Soc. 62, 4 (2017)
|
[16] |
B.Schumacher, Quantum coding, Phys. Rev. A51(4), 2738(1995)
CrossRef
ADS
Google scholar
|
[17] |
J. M.Martinis, Superconducting phase qubits, Quant. Inf. Proc. 8(2–3), 81(2009)
CrossRef
ADS
Google scholar
|
[18] |
H.Eleuch, Entanglement and autocorrelation function in semiconductor microcavities, Int. J. Mod. Phys. B24(29), 5653(2010)
CrossRef
ADS
Google scholar
|
[19] |
H.Eleuch, Autocorrelation function of microcavityemitting field in the linear regime, EPJD48(1), 139(2008)
CrossRef
ADS
Google scholar
|
[20] |
E. A.Sete, A. A.Svidzinsky, H.Eleuch, Z.Yang, R. D.Nevels, and M. O.Scully, Correlated spontaneous emission on the Danube, J. Mod. Opt. 57(14–15), 1311(2010)
CrossRef
ADS
Google scholar
|
[21] |
E. A.Sete, A. A.Svidzinsky, Y. V.Rostovtsev, H.Eleuch, P. K.Jha, S.Suckewer, and M. O.Scully, Using quantum coherence to generate gain in the XUV and X-ray: Gain-Swept superradiance and lasing without inversion, IEEE J. Sel. Top. Quantum Electron. 18(1), 541(2012)
CrossRef
ADS
Google scholar
|
[22] |
H.Eleuchand R.Bennaceur, An optical soliton pair among absorbingthree-level atoms, J. Opt. A5(5), 528(2003)
CrossRef
ADS
Google scholar
|
[23] |
M.Tinkham, Introduction to Superconductivity, 2nd Ed., New York: McGraw Hill, 1996
|
[24] |
R. W.Simmonds, K.Lang, D.Hite, S.Nam, D.Pappas, and J.Martinis, Decoherence in Josephson Phase Qubits from Junction Resonators, Phys. Rev. Lett. 93(7), 077003(2004)
CrossRef
ADS
Google scholar
|
[25] |
M. A.Sillanpää, J. I.Park, and R. W.Simmonds, Coherent quantum state storage and transfer between two phase qubits via a resonant cavity, Nature449, 438(2007)
CrossRef
ADS
Google scholar
|
[26] |
F.Altomare, J. I.Park, K.Cicak, M. A.Sillanpää, M. S.Allman, D.Li, A.Sirois, J. A.Strong, J. D.Whittaker, and R. W.Simmonds, Tripartite interactions between two phase qubits and a resonant cavity, Nat. Phys. 6(10), 777(2010)
|
[27] |
O.Gameland D. F. V.James, Time-averaged quantum dynamics and the validity of the effective Hamiltonian model, Phys. Rev. A82, 052106(2010)
CrossRef
ADS
Google scholar
|
[28] |
M. A.Nielsenand I. L.Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, Ch. 4 and 6 (2000)
|
[29] |
H. F.Wang, X. Q.Shao, Y. F.Zhao, S.Zhang, and K. H.Yeon, Protocol and quantum circuit for implementing the N-bit discrete quantum Fourier transform in cavity QED, J. Phys. At. Mol. Opt. Phys. 43(6), 065503(2010)
CrossRef
ADS
Google scholar
|
[30] |
H. F.Wang, J. J.Wen, A. D.Zhu, S.Zhang, and K. H.Yeon, Deterministic CNOT gate and entanglement swapping for photonic qubits using a quantum-dot spin in a double-sided optical microcavity, New J. Phys. 13, 013021(2011)
CrossRef
ADS
Google scholar
|
[31] |
H. F.Wang, X. X.Jiang, S.Zhang, and K. H.Yeon, Efficient quantum circuit for implementing discrete quantum Fourier transform in solid-state qubits, J. Phys. At. Mol. Opt. Phys. 44(11), 115502(2011)
CrossRef
ADS
Google scholar
|
[32] |
A. S. F.Obada, H. A.Hessian, A. B. A.Mohamed, and A. H.Homid, Efficient protocol of NN-bit discrete quantum Fourier transform via transmon qubits coupled to a resonator, Quant. Inf. Proc. 13(2), 475(2014)
CrossRef
ADS
Google scholar
|
[33] |
A. H.Homid, A.Abdel-Aty, M.Abdel-Aty, A.Badawi, and A. S. F.Obada, Efficient realization of quantum search algorithm using quantum annealing processor with dissipation, J. Opt. Soc. Am. B32(9), 2025(2015)
CrossRef
ADS
Google scholar
|
[34] |
D.Deutschand R.Jozsa, Rapid solution of problems by quantum computation, Proc. R. Soc. Lond. A439(1907), 553(1992)
|
[35] |
D. R.Simon,On the power of quantum computation, Proc. 35th IEEE Symp. Found. Comp. Sci., Santa Fe, NM116–123 (1994)
CrossRef
ADS
Google scholar
|
[36] |
D. R.Simon, On the power of quantum computation, SIAM J. Comput. 26(5), 1474(1997)
CrossRef
ADS
Google scholar
|
[37] |
B. C.Sandersand G. J.Milburn, Optimal quantum measurements for phase estimation, Phys. Rev. Lett. 75(16), 2944(1995)
CrossRef
ADS
Google scholar
|
[38] |
P.Shor, Discrete logarithms and factoring, Proc. 35th Ann. Symp. Found.Comp. Sci. 124(1994)
|
[39] |
P.Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26(5), 1484(1997)
CrossRef
ADS
Google scholar
|
[40] |
O.Manasreh, Semiconductor Heterojunctions and Nanostructures, New York: McGraw-Hill Profes-sional, 2005
|
[41] |
R. D.Levine, Quantum Mechanics of Molecular Rate Processes, New York: Dover Publications, 1999
|
[42] |
N.Fromanand P. O.Froman, JWKB Approximation, Amsterdam: North-Holland, Amsterdam, 1965
|
[43] |
H.Eleuch, Y. V.Rostovtsev, and M. O.Scully, New analytic solution of Schrödinger’s equation, EPL(Europhys. Lett.)89(5), 50004(2010)
CrossRef
ADS
Google scholar
|
[44] |
J. Q.You and F.Nori, Superconducting circuits and quantum information, Phys. Today58(11), 42 (2005)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |