Cavity control as a new quantum algorithms implementation treatment

M. AbuGhanem, A. H. Homid, M. Abdel-Aty

PDF(8110 KB)
PDF(8110 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 130303. DOI: 10.1007/s11467-017-0709-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Cavity control as a new quantum algorithms implementation treatment

Author information +
History +

Abstract

Based on recent experiments [Nature 449, 438 (2007) and Nature Physics 6, 777 (2010)], a new approach for realizing quantum gates for the design of quantum algorithms was developed. Accordingly, the operation times of such gates while functioning in algorithm applications depend on the number of photons present in their resonant cavities. Multi-qubit algorithms can be realized in systems in which the photon number is increased slightly over the qubit number. In addition, the time required for operation is considerably less than the dephasing and relaxation times of the systems. The contextual use of the photon number as a main control in the realization of any algorithm was demonstrated. The results indicate the possibility of a full integration into the realization of multi-qubit multiphoton states and its application in algorithm designs. Furthermore, this approach will lead to a successful implementation of these designs in future experiments.

Keywords

quantum computation / quantum algorithms implementation / cavity control

Cite this article

Download citation ▾
M. AbuGhanem, A. H. Homid, M. Abdel-Aty. Cavity control as a new quantum algorithms implementation treatment. Front. Phys., 2018, 13(1): 130303 https://doi.org/10.1007/s11467-017-0709-3

References

[1]
A. M.Turing, On computable numbers, with an application to the Entscheidungsproblem, Proc. Lond. Math. Soc. s2–42(1), 230 (1937)
[2]
R. P.Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21(6–7), 467(1982)
CrossRef ADS Google scholar
[3]
P.Benioff, Quantum mechanical models of Turing machines that dissipate no energy, Phys. Rev. Lett. 48(23), 1581(1982)
CrossRef ADS Google scholar
[4]
D.Deutsch, Quantum theory, the Church-Turing Principle and the universal quantum computer, Proc. R. Soc. Lond. A400(1818), 97(1985)
[5]
D.Deutsch, Quantum computational networks, Proc. R. Soc. Lond. A425(1868), 73(1989)
[6]
D. P.DiVincenzo, Quantum computation, Science270(5234), 255(1995)
CrossRef ADS Google scholar
[7]
D. P.DiVincenzo, The physical implementation of quantum computation, Fortschr. Phys. 48(9–11), 771(2000)
CrossRef ADS Google scholar
[8]
M.Nakahara, S.Kanemitsu, M. M.Salomaa, and S.Takagi(Eds.), Physical Realization of Quantum Computing: Are the DiVincenzo Criteria Fulfilled in 2004? Singapore: World Scientific, 2006
CrossRef ADS Google scholar
[9]
L. M. K.Vandersypenand I. L.Chuang, NMR techniques for quantum control and computation, Rev. Mod. Phys. 76(4), 1037(2005)
CrossRef ADS Google scholar
[10]
E. L.Raab, M.Prentiss, A.Cable, S.Chu, and D. E.Pritchard, Trapping of neutral sodium atoms with radiation pressure, Phys. Rev. Lett. 59(23), 2631(1987)
CrossRef ADS Google scholar
[11]
G.Wendinand V. S.Shumeiko, Superconducting quantum circuits, qubits and computing, arXiv: condmat/ 0508729 (2005)
[12]
B. D.Josephson, Possible new effects in superconductive tunnelling, Phys. Lett. 1(7), 251(1962)
CrossRef ADS Google scholar
[13]
B. D.Josephson, The discovery of tunnelling supercurrents, Rev. Mod. Phys. 46(2), 251(1974)
CrossRef ADS Google scholar
[14]
U.Meirav, M. A.Kastner, and S. J.Wind, Singleelectron charging and periodic conductance resonances in GaAs nanostructures, Phys. Rev. Lett.65(6), 771(1990)
CrossRef ADS Google scholar
[15]
O.Gamel, H.Chan, G.Fleming, and K. B.Whaley, Fully quantum analysis of photosynthetic coherent energy absorption and transfer, Bull. Am. Phys. Soc. 62, 4 (2017)
[16]
B.Schumacher, Quantum coding, Phys. Rev. A51(4), 2738(1995)
CrossRef ADS Google scholar
[17]
J. M.Martinis, Superconducting phase qubits, Quant. Inf. Proc. 8(2–3), 81(2009)
CrossRef ADS Google scholar
[18]
H.Eleuch, Entanglement and autocorrelation function in semiconductor microcavities, Int. J. Mod. Phys. B24(29), 5653(2010)
CrossRef ADS Google scholar
[19]
H.Eleuch, Autocorrelation function of microcavityemitting field in the linear regime, EPJD48(1), 139(2008)
CrossRef ADS Google scholar
[20]
E. A.Sete, A. A.Svidzinsky, H.Eleuch, Z.Yang, R. D.Nevels, and M. O.Scully, Correlated spontaneous emission on the Danube, J. Mod. Opt. 57(14–15), 1311(2010)
CrossRef ADS Google scholar
[21]
E. A.Sete, A. A.Svidzinsky, Y. V.Rostovtsev, H.Eleuch, P. K.Jha, S.Suckewer, and M. O.Scully, Using quantum coherence to generate gain in the XUV and X-ray: Gain-Swept superradiance and lasing without inversion, IEEE J. Sel. Top. Quantum Electron. 18(1), 541(2012)
CrossRef ADS Google scholar
[22]
H.Eleuchand R.Bennaceur, An optical soliton pair among absorbingthree-level atoms, J. Opt. A5(5), 528(2003)
CrossRef ADS Google scholar
[23]
M.Tinkham, Introduction to Superconductivity, 2nd Ed., New York: McGraw Hill, 1996
[24]
R. W.Simmonds, K.Lang, D.Hite, S.Nam, D.Pappas, and J.Martinis, Decoherence in Josephson Phase Qubits from Junction Resonators, Phys. Rev. Lett. 93(7), 077003(2004)
CrossRef ADS Google scholar
[25]
M. A.Sillanpää, J. I.Park, and R. W.Simmonds, Coherent quantum state storage and transfer between two phase qubits via a resonant cavity, Nature449, 438(2007)
CrossRef ADS Google scholar
[26]
F.Altomare, J. I.Park, K.Cicak, M. A.Sillanpää, M. S.Allman, D.Li, A.Sirois, J. A.Strong, J. D.Whittaker, and R. W.Simmonds, Tripartite interactions between two phase qubits and a resonant cavity, Nat. Phys. 6(10), 777(2010)
[27]
O.Gameland D. F. V.James, Time-averaged quantum dynamics and the validity of the effective Hamiltonian model, Phys. Rev. A82, 052106(2010)
CrossRef ADS Google scholar
[28]
M. A.Nielsenand I. L.Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, Ch. 4 and 6 (2000)
[29]
H. F.Wang, X. Q.Shao, Y. F.Zhao, S.Zhang, and K. H.Yeon, Protocol and quantum circuit for implementing the N-bit discrete quantum Fourier transform in cavity QED, J. Phys. At. Mol. Opt. Phys. 43(6), 065503(2010)
CrossRef ADS Google scholar
[30]
H. F.Wang, J. J.Wen, A. D.Zhu, S.Zhang, and K. H.Yeon, Deterministic CNOT gate and entanglement swapping for photonic qubits using a quantum-dot spin in a double-sided optical microcavity, New J. Phys. 13, 013021(2011)
CrossRef ADS Google scholar
[31]
H. F.Wang, X. X.Jiang, S.Zhang, and K. H.Yeon, Efficient quantum circuit for implementing discrete quantum Fourier transform in solid-state qubits, J. Phys. At. Mol. Opt. Phys. 44(11), 115502(2011)
CrossRef ADS Google scholar
[32]
A. S. F.Obada, H. A.Hessian, A. B. A.Mohamed, and A. H.Homid, Efficient protocol of NN-bit discrete quantum Fourier transform via transmon qubits coupled to a resonator, Quant. Inf. Proc. 13(2), 475(2014)
CrossRef ADS Google scholar
[33]
A. H.Homid, A.Abdel-Aty, M.Abdel-Aty, A.Badawi, and A. S. F.Obada, Efficient realization of quantum search algorithm using quantum annealing processor with dissipation, J. Opt. Soc. Am. B32(9), 2025(2015)
CrossRef ADS Google scholar
[34]
D.Deutschand R.Jozsa, Rapid solution of problems by quantum computation, Proc. R. Soc. Lond. A439(1907), 553(1992)
[35]
D. R.Simon,On the power of quantum computation, Proc. 35th IEEE Symp. Found. Comp. Sci., Santa Fe, NM116–123 (1994)
CrossRef ADS Google scholar
[36]
D. R.Simon, On the power of quantum computation, SIAM J. Comput. 26(5), 1474(1997)
CrossRef ADS Google scholar
[37]
B. C.Sandersand G. J.Milburn, Optimal quantum measurements for phase estimation, Phys. Rev. Lett. 75(16), 2944(1995)
CrossRef ADS Google scholar
[38]
P.Shor, Discrete logarithms and factoring, Proc. 35th Ann. Symp. Found.Comp. Sci. 124(1994)
[39]
P.Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26(5), 1484(1997)
CrossRef ADS Google scholar
[40]
O.Manasreh, Semiconductor Heterojunctions and Nanostructures, New York: McGraw-Hill Profes-sional, 2005
[41]
R. D.Levine, Quantum Mechanics of Molecular Rate Processes, New York: Dover Publications, 1999
[42]
N.Fromanand P. O.Froman, JWKB Approximation, Amsterdam: North-Holland, Amsterdam, 1965
[43]
H.Eleuch, Y. V.Rostovtsev, and M. O.Scully, New analytic solution of Schrödinger’s equation, EPL(Europhys. Lett.)89(5), 50004(2010)
CrossRef ADS Google scholar
[44]
J. Q.You and F.Nori, Superconducting circuits and quantum information, Phys. Today58(11), 42 (2005)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(8110 KB)

Accesses

Citations

Detail

Sections
Recommended

/