Minority carrier lifetime evaluation of periphery edge region in high-performance multicrystalline ingot produced by seed-assisted directional solidification

Zhong Li, Jia-Dan Li, Lin Zhuang, Rui-Jiang Hong

PDF(3931 KB)
PDF(3931 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 128103. DOI: 10.1007/s11467-017-0708-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Minority carrier lifetime evaluation of periphery edge region in high-performance multicrystalline ingot produced by seed-assisted directional solidification

Author information +
History +

Abstract

A high-performance multicrystalline silicon (mc-Si) ingot was produced by seed-assisted directional solidification, and the minority carrier lifetime of the periphery edge region was evaluated. The defects and impurities in the periphery edge region of the silicon wafers were systematically studied with photoluminescence (PL) imaging, minority carrier lifetime mapping, and Fourier transform infrared (FTIR) spectroscopy. Their relationships with the minority carrier lifetime were investigated. The concentration of substitutional carbon, interstitial oxygen, and dislocation clusters is not directly correlated with the low minority carrier lifetime of the edge zone of the mc-Si ingot. Inhomogeneous grain size distribution and contamination with iron impurities were demonstrated to be the main factors affecting the low minority carrier lifetime. By controlling the impurities and improving the grain size distribution, a modified furnace was designed and a higher-quality mc-Si ingot was manufactured.

Keywords

minority carrier lifetime / periphery edge / seed-assisted directional solidification / defects / impurity

Cite this article

Download citation ▾
Zhong Li, Jia-Dan Li, Lin Zhuang, Rui-Jiang Hong. Minority carrier lifetime evaluation of periphery edge region in high-performance multicrystalline ingot produced by seed-assisted directional solidification. Front. Phys., 2017, 12(5): 128103 https://doi.org/10.1007/s11467-017-0708-4

References

[1]
F. Q.Huang, C. Y.Yang, and D. Y.Wan, Advanced solar materials for thin-film photovoltaic cells, Front. Phys. 6(2), 177 (2011)
CrossRef ADS Google scholar
[2]
N. P.Dasguptaand P.Yang, Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion, Front. Phys. 9(3), 289(2014)
CrossRef ADS Google scholar
[3]
W. L.Chen, G. S.Shen, Z.Wu, Z.Li, and R. J.Hong, Optimizing transparent conductive Al-doped ZnO thin films for SiNx free crystalline Si solar cells, J. Mater. Sci. Mater. Electron. 27(7), 7566(2016)
CrossRef ADS Google scholar
[4]
J. D.Li, G. S.Shen, W. L.Chen, Z.Li, and R. J.Hong, Preparation of SiNx multilayer films by mid-frequency magnetron sputtering for crystalline silicon solar cells, Mater. Sci. Semicond. Process. 59, 40(2017)
CrossRef ADS Google scholar
[5]
Z. L.Wang, W. H.Xie, and Y. H.Zhao, Tunable band structure and effective mass of disordered chalcopyrite, Front. Phys. 12(1), 127103(2017)
CrossRef ADS Google scholar
[6]
Z. Y.Wu, G. X.Zhong, Z. Y.Zhang, X. C.Zhou,Z. X.Wang, and X. M.Huang, Optimization of the highperformance multi-crystalline silicon solidification process by insulation partition design using transient global simulations, J. Cryst. Growth426, 110(2015)
CrossRef ADS Google scholar
[7]
Y. M.Yang, A.Yu, B.Hsu, W. C.Hsu, A.Yang, and C. W.Lan, Development of high-performance multicrystalline silicon for photovoltaic industry, Prog. Photovolt. Res. Appl. 23(3), 340(2015)
CrossRef ADS Google scholar
[8]
J. D.Li, Y. F.Chen, and R. J.Hong, Modeling and optimization of the feedstock melting for industrial photovoltaic multi-crystalline silicon ingot, Sol. Energy139, 108(2016)
CrossRef ADS Google scholar
[9]
T. T.Jiang, X. G.Yu, L.Wang, X.Gu, and D. R.Yang, On the low carrier lifetime edge zone in multicrystalline silicon ingots, J. Appl. Phys. 115(1), 012007(2014)
CrossRef ADS Google scholar
[10]
A. A.Istratov, T.Buonassisi, R. J.McDonald, A. R.Smith, R.Schindler, J. A.Rand, J. P.Kalejs, and E. R.Weber, Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length, J. Appl. Phys. 94(10), 6552(2003)
CrossRef ADS Google scholar
[11]
D. P.Fenning, J.Hofstetter, M. I.Bertoni,S.Hudelson, M.Rinio,J. F.Lelievre,B.Lai, C.del Canizo, and T.Buonassisi, Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling, Appl. Phys. Lett. 98(16), 162103(2011)
CrossRef ADS Google scholar
[12]
A. A.Istratov, H.Hieslmair, and E. R.Weber, Iron contamination in silicon technology, Appl. Phys. A70(5), 489(2000)
CrossRef ADS Google scholar
[13]
M.Trempa, C.Reimann, J.Friedrich, G.Müller, L.Sylla, A.Krause, andT.Richter, Investigation of iron contamination of seed crystals and its impact on lifetime distribution in Quasimono silicon ingots, J. Cryst. Growth429, 56(2015)
CrossRef ADS Google scholar
[14]
V.Osinniy, P.Bomholt,A.Nylandsted Larsen, E.Enebakk, A. K.Søiland, R.Tronstad, and Y.Safir, Factors limiting minority carrier lifetime in solar grade silicon produced by the metallurgical route, Sol. Energy Mater. Sol. Cells95(2), 564(2011)
CrossRef ADS Google scholar
[15]
X. X.Liu, G. H.Yan, and R. J.Hong, Generation mechanism of inhomogeneous minority carrier lifetime distribution in high quality mc-Si wafers and the impacts on electrical performance of wafers and solar cells, J. Mater. Sci. Technol. 31(11), 1094(2015)
CrossRef ADS Google scholar
[16]
H. Y.Wang, N.Usami, K.Fujiwara, K.Kutsukake, and K.Nakajima, Microstructures of Si multicrystals and their impact on minority carrier diffusion length, Acta Mater. 57(11), 3268(2009)
CrossRef ADS Google scholar
[17]
X. H.Tang, L. A.Francis, L. F.Gong, F. Z.Wang, J. P.Raskin, D.Flandre, S.Zhang, D.You, L.Wu, and B.Dai, Characterization of high-efficiency multicrystalline silicon in industrial production, Sol. Energy Mater. Sol. Cells117(10), 225(2013)
CrossRef ADS Google scholar
[18]
K. M.Yeh, C. K.Hseih, W. C.Hsu, and C. W.Lan, High-quality multi-crystalline silicon growth for solar cells by grain-controlled directional solidification, Prog. Photovolt. Res. Appl. 18(4), 265(2010)
CrossRef ADS Google scholar
[19]
D.Macdonald, A.Cuevas, A.Kinomura, Y.Nakano, and L. J.Geerligs, Transition-metal profiles in a multicrystalline silicon ingot, J. Appl. Phys. 97(3), 033523(2005)
CrossRef ADS Google scholar
[20]
D. R.Yang, L. B.Lia, X. Y.Ma, R. X.Fan, D. L.Que, and H. J.Moeller, Oxygen-related centers in multicrystalline silicon, Sol. Energy Mater. Sol. Cells62(1–2), 37(2000)
CrossRef ADS Google scholar
[21]
L. J.Liu, S.Nakano, and K.Kakimoto, Carbon concentration and particle precipitation during directional solidification of multicrystalline silicon for solar cells, J. Cryst. Growth310(7–9), 2192(2008)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(3931 KB)

Accesses

Citations

Detail

Sections
Recommended

/