Minority carrier lifetime evaluation of periphery edge region in high-performance multicrystalline ingot produced by seed-assisted directional solidification

Zhong Li , Jia-Dan Li , Lin Zhuang , Rui-Jiang Hong

Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 128103

PDF (3931KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 128103 DOI: 10.1007/s11467-017-0708-4
RESEARCH ARTICLE

Minority carrier lifetime evaluation of periphery edge region in high-performance multicrystalline ingot produced by seed-assisted directional solidification

Author information +
History +
PDF (3931KB)

Abstract

A high-performance multicrystalline silicon (mc-Si) ingot was produced by seed-assisted directional solidification, and the minority carrier lifetime of the periphery edge region was evaluated. The defects and impurities in the periphery edge region of the silicon wafers were systematically studied with photoluminescence (PL) imaging, minority carrier lifetime mapping, and Fourier transform infrared (FTIR) spectroscopy. Their relationships with the minority carrier lifetime were investigated. The concentration of substitutional carbon, interstitial oxygen, and dislocation clusters is not directly correlated with the low minority carrier lifetime of the edge zone of the mc-Si ingot. Inhomogeneous grain size distribution and contamination with iron impurities were demonstrated to be the main factors affecting the low minority carrier lifetime. By controlling the impurities and improving the grain size distribution, a modified furnace was designed and a higher-quality mc-Si ingot was manufactured.

Keywords

minority carrier lifetime / periphery edge / seed-assisted directional solidification / defects / impurity

Cite this article

Download citation ▾
Zhong Li, Jia-Dan Li, Lin Zhuang, Rui-Jiang Hong. Minority carrier lifetime evaluation of periphery edge region in high-performance multicrystalline ingot produced by seed-assisted directional solidification. Front. Phys., 2017, 12(5): 128103 DOI:10.1007/s11467-017-0708-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. Q.Huang, C. Y.Yang, and D. Y.Wan, Advanced solar materials for thin-film photovoltaic cells, Front. Phys. 6(2), 177 (2011)

[2]

N. P.Dasguptaand P.Yang, Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion, Front. Phys. 9(3), 289(2014)

[3]

W. L.Chen, G. S.Shen, Z.Wu, Z.Li, and R. J.Hong, Optimizing transparent conductive Al-doped ZnO thin films for SiNx free crystalline Si solar cells, J. Mater. Sci. Mater. Electron. 27(7), 7566(2016)

[4]

J. D.Li, G. S.Shen, W. L.Chen, Z.Li, and R. J.Hong, Preparation of SiNx multilayer films by mid-frequency magnetron sputtering for crystalline silicon solar cells, Mater. Sci. Semicond. Process. 59, 40(2017)

[5]

Z. L.Wang, W. H.Xie, and Y. H.Zhao, Tunable band structure and effective mass of disordered chalcopyrite, Front. Phys. 12(1), 127103(2017)

[6]

Z. Y.Wu, G. X.Zhong, Z. Y.Zhang, X. C.Zhou,Z. X.Wang, and X. M.Huang, Optimization of the highperformance multi-crystalline silicon solidification process by insulation partition design using transient global simulations, J. Cryst. Growth426, 110(2015)

[7]

Y. M.Yang, A.Yu, B.Hsu, W. C.Hsu, A.Yang, and C. W.Lan, Development of high-performance multicrystalline silicon for photovoltaic industry, Prog. Photovolt. Res. Appl. 23(3), 340(2015)

[8]

J. D.Li, Y. F.Chen, and R. J.Hong, Modeling and optimization of the feedstock melting for industrial photovoltaic multi-crystalline silicon ingot, Sol. Energy139, 108(2016)

[9]

T. T.Jiang, X. G.Yu, L.Wang, X.Gu, and D. R.Yang, On the low carrier lifetime edge zone in multicrystalline silicon ingots, J. Appl. Phys. 115(1), 012007(2014)

[10]

A. A.Istratov, T.Buonassisi, R. J.McDonald, A. R.Smith, R.Schindler, J. A.Rand, J. P.Kalejs, and E. R.Weber, Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length, J. Appl. Phys. 94(10), 6552(2003)

[11]

D. P.Fenning, J.Hofstetter, M. I.Bertoni,S.Hudelson, M.Rinio,J. F.Lelievre,B.Lai, C.del Canizo, and T.Buonassisi, Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling, Appl. Phys. Lett. 98(16), 162103(2011)

[12]

A. A.Istratov, H.Hieslmair, and E. R.Weber, Iron contamination in silicon technology, Appl. Phys. A70(5), 489(2000)

[13]

M.Trempa, C.Reimann, J.Friedrich, G.Müller, L.Sylla, A.Krause, andT.Richter, Investigation of iron contamination of seed crystals and its impact on lifetime distribution in Quasimono silicon ingots, J. Cryst. Growth429, 56(2015)

[14]

V.Osinniy, P.Bomholt,A.Nylandsted Larsen, E.Enebakk, A. K.Søiland, R.Tronstad, and Y.Safir, Factors limiting minority carrier lifetime in solar grade silicon produced by the metallurgical route, Sol. Energy Mater. Sol. Cells95(2), 564(2011)

[15]

X. X.Liu, G. H.Yan, and R. J.Hong, Generation mechanism of inhomogeneous minority carrier lifetime distribution in high quality mc-Si wafers and the impacts on electrical performance of wafers and solar cells, J. Mater. Sci. Technol. 31(11), 1094(2015)

[16]

H. Y.Wang, N.Usami, K.Fujiwara, K.Kutsukake, and K.Nakajima, Microstructures of Si multicrystals and their impact on minority carrier diffusion length, Acta Mater. 57(11), 3268(2009)

[17]

X. H.Tang, L. A.Francis, L. F.Gong, F. Z.Wang, J. P.Raskin, D.Flandre, S.Zhang, D.You, L.Wu, and B.Dai, Characterization of high-efficiency multicrystalline silicon in industrial production, Sol. Energy Mater. Sol. Cells117(10), 225(2013)

[18]

K. M.Yeh, C. K.Hseih, W. C.Hsu, and C. W.Lan, High-quality multi-crystalline silicon growth for solar cells by grain-controlled directional solidification, Prog. Photovolt. Res. Appl. 18(4), 265(2010)

[19]

D.Macdonald, A.Cuevas, A.Kinomura, Y.Nakano, and L. J.Geerligs, Transition-metal profiles in a multicrystalline silicon ingot, J. Appl. Phys. 97(3), 033523(2005)

[20]

D. R.Yang, L. B.Lia, X. Y.Ma, R. X.Fan, D. L.Que, and H. J.Moeller, Oxygen-related centers in multicrystalline silicon, Sol. Energy Mater. Sol. Cells62(1–2), 37(2000)

[21]

L. J.Liu, S.Nakano, and K.Kakimoto, Carbon concentration and particle precipitation during directional solidification of multicrystalline silicon for solar cells, J. Cryst. Growth310(7–9), 2192(2008)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (3931KB)

561

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/