Minority carrier lifetime evaluation of periphery edge region in high-performance multicrystalline ingot produced by seed-assisted directional solidification
Zhong Li, Jia-Dan Li, Lin Zhuang, Rui-Jiang Hong
Minority carrier lifetime evaluation of periphery edge region in high-performance multicrystalline ingot produced by seed-assisted directional solidification
A high-performance multicrystalline silicon (mc-Si) ingot was produced by seed-assisted directional solidification, and the minority carrier lifetime of the periphery edge region was evaluated. The defects and impurities in the periphery edge region of the silicon wafers were systematically studied with photoluminescence (PL) imaging, minority carrier lifetime mapping, and Fourier transform infrared (FTIR) spectroscopy. Their relationships with the minority carrier lifetime were investigated. The concentration of substitutional carbon, interstitial oxygen, and dislocation clusters is not directly correlated with the low minority carrier lifetime of the edge zone of the mc-Si ingot. Inhomogeneous grain size distribution and contamination with iron impurities were demonstrated to be the main factors affecting the low minority carrier lifetime. By controlling the impurities and improving the grain size distribution, a modified furnace was designed and a higher-quality mc-Si ingot was manufactured.
minority carrier lifetime / periphery edge / seed-assisted directional solidification / defects / impurity
[1] |
F. Q.Huang, C. Y.Yang, and D. Y.Wan, Advanced solar materials for thin-film photovoltaic cells, Front. Phys. 6(2), 177 (2011)
CrossRef
ADS
Google scholar
|
[2] |
N. P.Dasguptaand P.Yang, Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion, Front. Phys. 9(3), 289(2014)
CrossRef
ADS
Google scholar
|
[3] |
W. L.Chen, G. S.Shen, Z.Wu, Z.Li, and R. J.Hong, Optimizing transparent conductive Al-doped ZnO thin films for SiNx free crystalline Si solar cells, J. Mater. Sci. Mater. Electron. 27(7), 7566(2016)
CrossRef
ADS
Google scholar
|
[4] |
J. D.Li, G. S.Shen, W. L.Chen, Z.Li, and R. J.Hong, Preparation of SiNx multilayer films by mid-frequency magnetron sputtering for crystalline silicon solar cells, Mater. Sci. Semicond. Process. 59, 40(2017)
CrossRef
ADS
Google scholar
|
[5] |
Z. L.Wang, W. H.Xie, and Y. H.Zhao, Tunable band structure and effective mass of disordered chalcopyrite, Front. Phys. 12(1), 127103(2017)
CrossRef
ADS
Google scholar
|
[6] |
Z. Y.Wu, G. X.Zhong, Z. Y.Zhang, X. C.Zhou,Z. X.Wang, and X. M.Huang, Optimization of the highperformance multi-crystalline silicon solidification process by insulation partition design using transient global simulations, J. Cryst. Growth426, 110(2015)
CrossRef
ADS
Google scholar
|
[7] |
Y. M.Yang, A.Yu, B.Hsu, W. C.Hsu, A.Yang, and C. W.Lan, Development of high-performance multicrystalline silicon for photovoltaic industry, Prog. Photovolt. Res. Appl. 23(3), 340(2015)
CrossRef
ADS
Google scholar
|
[8] |
J. D.Li, Y. F.Chen, and R. J.Hong, Modeling and optimization of the feedstock melting for industrial photovoltaic multi-crystalline silicon ingot, Sol. Energy139, 108(2016)
CrossRef
ADS
Google scholar
|
[9] |
T. T.Jiang, X. G.Yu, L.Wang, X.Gu, and D. R.Yang, On the low carrier lifetime edge zone in multicrystalline silicon ingots, J. Appl. Phys. 115(1), 012007(2014)
CrossRef
ADS
Google scholar
|
[10] |
A. A.Istratov, T.Buonassisi, R. J.McDonald, A. R.Smith, R.Schindler, J. A.Rand, J. P.Kalejs, and E. R.Weber, Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length, J. Appl. Phys. 94(10), 6552(2003)
CrossRef
ADS
Google scholar
|
[11] |
D. P.Fenning, J.Hofstetter, M. I.Bertoni,S.Hudelson, M.Rinio,J. F.Lelievre,B.Lai, C.del Canizo, and T.Buonassisi, Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling, Appl. Phys. Lett. 98(16), 162103(2011)
CrossRef
ADS
Google scholar
|
[12] |
A. A.Istratov, H.Hieslmair, and E. R.Weber, Iron contamination in silicon technology, Appl. Phys. A70(5), 489(2000)
CrossRef
ADS
Google scholar
|
[13] |
M.Trempa, C.Reimann, J.Friedrich, G.Müller, L.Sylla, A.Krause, andT.Richter, Investigation of iron contamination of seed crystals and its impact on lifetime distribution in Quasimono silicon ingots, J. Cryst. Growth429, 56(2015)
CrossRef
ADS
Google scholar
|
[14] |
V.Osinniy, P.Bomholt,A.Nylandsted Larsen, E.Enebakk, A. K.Søiland, R.Tronstad, and Y.Safir, Factors limiting minority carrier lifetime in solar grade silicon produced by the metallurgical route, Sol. Energy Mater. Sol. Cells95(2), 564(2011)
CrossRef
ADS
Google scholar
|
[15] |
X. X.Liu, G. H.Yan, and R. J.Hong, Generation mechanism of inhomogeneous minority carrier lifetime distribution in high quality mc-Si wafers and the impacts on electrical performance of wafers and solar cells, J. Mater. Sci. Technol. 31(11), 1094(2015)
CrossRef
ADS
Google scholar
|
[16] |
H. Y.Wang, N.Usami, K.Fujiwara, K.Kutsukake, and K.Nakajima, Microstructures of Si multicrystals and their impact on minority carrier diffusion length, Acta Mater. 57(11), 3268(2009)
CrossRef
ADS
Google scholar
|
[17] |
X. H.Tang, L. A.Francis, L. F.Gong, F. Z.Wang, J. P.Raskin, D.Flandre, S.Zhang, D.You, L.Wu, and B.Dai, Characterization of high-efficiency multicrystalline silicon in industrial production, Sol. Energy Mater. Sol. Cells117(10), 225(2013)
CrossRef
ADS
Google scholar
|
[18] |
K. M.Yeh, C. K.Hseih, W. C.Hsu, and C. W.Lan, High-quality multi-crystalline silicon growth for solar cells by grain-controlled directional solidification, Prog. Photovolt. Res. Appl. 18(4), 265(2010)
CrossRef
ADS
Google scholar
|
[19] |
D.Macdonald, A.Cuevas, A.Kinomura, Y.Nakano, and L. J.Geerligs, Transition-metal profiles in a multicrystalline silicon ingot, J. Appl. Phys. 97(3), 033523(2005)
CrossRef
ADS
Google scholar
|
[20] |
D. R.Yang, L. B.Lia, X. Y.Ma, R. X.Fan, D. L.Que, and H. J.Moeller, Oxygen-related centers in multicrystalline silicon, Sol. Energy Mater. Sol. Cells62(1–2), 37(2000)
CrossRef
ADS
Google scholar
|
[21] |
L. J.Liu, S.Nakano, and K.Kakimoto, Carbon concentration and particle precipitation during directional solidification of multicrystalline silicon for solar cells, J. Cryst. Growth310(7–9), 2192(2008)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |