PEG-PLGA electrospun nanofibrous membranes loaded with Au@Fe2O3 nanoparticles for drug delivery applications

Salvatore Spadaro, Marco Santoro, Francesco Barreca, Angela Scala, Simona Grimato, Fortunato Neri, Enza Fazio

Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 136201.

PDF(21042 KB)
PDF(21042 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 136201. DOI: 10.1007/s11467-017-0703-9
RESEARCH ARTICLE
RESEARCH ARTICLE

PEG-PLGA electrospun nanofibrous membranes loaded with Au@Fe2O3 nanoparticles for drug delivery applications

Author information +
History +

Abstract

A PEGylated-PLGA random nanofibrous membrane loaded with gold and iron oxide nanoparticles and with silibinin was prepared by electrospinning deposition. The nanofibrous membrane can be remotely controlled and activated by a laser light or magnetic field to release biological agents on demand. The nanosystems were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and thermogravimetric analyses. The drug loading efficiency and drug content percentages were determined by UV-vis optical absorption spectroscopy. The nanofibrous membrane irradiated by a relatively low-intensity laser or stimulated by a magnetic field showed sustained silibinin release for at least 60 h, without the burst effect. The proposed low-cost electrospinning procedure is capable of assembling, via a one-step procedure, a stimuli-responsive drug-loaded nanosystem with metallic nanoparticles to be externally activated for controlled drug delivery.

Keywords

Au@Fe2O3 nanoparticles / PEG-PLGA copolymer / pulsed laser ablation / electrospinning / drug delivery

Cite this article

Download citation ▾
Salvatore Spadaro, Marco Santoro, Francesco Barreca, Angela Scala, Simona Grimato, Fortunato Neri, Enza Fazio. PEG-PLGA electrospun nanofibrous membranes loaded with Au@Fe2O3 nanoparticles for drug delivery applications. Front. Phys., 2018, 13(1): 136201 https://doi.org/10.1007/s11467-017-0703-9

References

[1]
P.Raghavan, D. H.Lim, J. H.Ahn, C.Nah, D. C.Sherrington, H. S.Ryu, and H. J.Ahn, Electrospun polymer nanofibers: The booming cutting edge technology, React. Funct. Polym. 72(12), 915 (2012)
CrossRef ADS Google scholar
[2]
A.Krupa, A.Jaworek, A. T.Sobczyk, M.Lackowski, T.Czech, S.Ramakrishna, S.Sundarrajan, and D.Pliszka, Electrosprayed nanoparticles for nanofiber coating, ILASS 2008, 8-10.IX. 2008, Como Lake, Italy (Proc., Paper ID P-13)
[3]
K. C.Gupta, A.Haider, Y.Choi, and I.Kang, Nanofibrous scaffolds in biomedical applications, Biomaterials Research18(1), 5 (2014)
CrossRef ADS Google scholar
[4]
S. Y.Chew, J.Wen, E. K. F.Yim, and K. W.Leong, Sustained release of proteins from electrospun biodegradable fibers, Biomacromolecules6(4), 2017(2005)
CrossRef ADS Google scholar
[5]
F.Zheng, S.Wang, M.Shen, M.Zhu, and X.Shi, Antitumor efficacy of doxorubicin-loaded electrospun nanohydroxyapatite– poly(lactic-co-glycolic acid) composite nanofibers, Polym. Chem. 4(4), 933(2013)
CrossRef ADS Google scholar
[6]
Z. M.Huang, Y. Z.Zhang, M.Kotaki, and S.Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol. 63(15), 2223(2003)
CrossRef ADS Google scholar
[7]
T. T.Marquez-Lago, D. M.Allen, andJ.Thewalt, A novel approach to modelling water transport and drug diffusion through the stratum corneum, Theor. Biol. Med. Model. 7(1), 33(2010)
CrossRef ADS Google scholar
[8]
E.Fazio, A.Scala, S.Grimato, A.Ridolfo, G.Grassi, and F.Neri, Laser light triggered smart release of silibinin from a PEGylated–PLGA gold nanocomposite, J. Mater. Chem. B Mater. Biol. Med. 3(46), 9023(2015)
CrossRef ADS Google scholar
[9]
F.Neri, A.Scala, S.Grimato, M.Santoro, S.Spadaro, F.Barreca, F.Cimino, A.Speciale, A.Saija, G.Grassi, and E.Fazio, Biocompatible silver nanoparticles embedded in a PEG–PLA polymeric matrix for stimulated laser light drug release, J. Nanopart. Res. 18(6), 153(2016)
CrossRef ADS Google scholar
[10]
A.Hervaultand N. T. K.Thanh, Magnetic nanoparticle-based therapeutic agents for thermochemotherapy treatment of cancer, Nanoscale6(20), 11553(2014)
CrossRef ADS Google scholar
[11]
E.Fazio, M.Santoro, G.Lentini, D.Franco, S. P. P.Guglielmino, and F.Neri, Iron oxide nanoparticles prepared by laser ablation: Synthesis, structural properties and antimicrobial activity, Colloids Surf. A Physicochem. Eng. Asp. 490, 98(2016)
CrossRef ADS Google scholar
[12]
S. H.Shimand T. S.Duffy, Raman spectroscopy of Fe2O3 to 62 GPa, Am. Mineral. 87(2–3), 318(2002)
CrossRef ADS Google scholar
[13]
V.Rebuttini, E.Fazio, S.Santangelo, F.Neri, G.Caputo, C.Martin, T.Brousse, F.Favier, and N.Pinna, Chemical modification of graphene oxide through diazonium chemistry and its influence on the structureproperty relationships of graphene oxide-iron oxide nanocomposites, Chemistry21(35), 1 (2015)
CrossRef ADS Google scholar
[14]
C. S. S. R.Kumarand F.Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Adv. Drug Deliv. Rev. 63(9), 789(2011)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(21042 KB)

Accesses

Citations

Detail

Sections
Recommended

/