Cross-symmetry breaking of two-component discrete dipolar matter-wave solitons

Yong-Yao Li, Zhi-Wei Fan, Zhi-Huan Luo, Yan Liu, He-Xiang He, Jian-Tao Lü, Jia-Ning Xie, Chun-Qing Huang, Hai-Shu Tan

PDF(12522 KB)
PDF(12522 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 124206. DOI: 10.1007/s11467-017-0702-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Cross-symmetry breaking of two-component discrete dipolar matter-wave solitons

Author information +
History +

Abstract

We study the spontaneous symmetry breaking of dipolar Bose–Einstein condensates trapped in stacks of two-well systems, which may be effectively built as one-dimensional trapping lattices sliced by a repelling laser sheet. If the potential wells are sufficiently deep, the system is modeled by coupled discrete Gross–Pitaevskii equations with nonlocal self- and cross-interaction terms representing dipole–dipole interactions. When the dipoles are not polarized perpendicular or parallel to the lattice, the crossinteraction is asymmetric, replacing the familiar symmetric two-component solitons with a new species of cross-symmetric or-asymmetric ones. The orientation of the dipole moments and the interwell hopping rate strongly affect the shapes of the discrete two-component solitons as well as the characteristics of the cross-symmetry breaking and the associated phase transition. The sub- and super-critical types of cross-symmetry breaking can be controlled by either the hopping rate between the components or the total norm of the solitons. The effect of the interplay between the contact nonlinearity and the dipole angle on the cross-symmetry breaking is also discussed.

Keywords

discrete matter-wave solitons / two-component systems / dipole–dipole interactions / cross-symmetry breaking

Cite this article

Download citation ▾
Yong-Yao Li, Zhi-Wei Fan, Zhi-Huan Luo, Yan Liu, He-Xiang He, Jian-Tao Lü, Jia-Ning Xie, Chun-Qing Huang, Hai-Shu Tan. Cross-symmetry breaking of two-component discrete dipolar matter-wave solitons. Front. Phys., 2017, 12(5): 124206 https://doi.org/10.1007/s11467-017-0702-x

References

[1]
A.Griesmaier, Generation of a dipolar Bose–Einstein condensate, J. Phys. B40(14), R91 (2007)
CrossRef ADS Google scholar
[2]
T.Lahaye, C.Menotti, L.Santos, M.Lewenstein, and T.Pfau, The physics of dipolar bosonic quantum gases, Rep. Prog. Phys. 72(12), 126401(2009)
CrossRef ADS Google scholar
[3]
M. A.Baranov, Theoretical progress in many-body physics with ultracold dipolar gases, Phys. Rep. 464(3), 71(2008)
CrossRef ADS Google scholar
[4]
S.Giovanazzi,A.Görlitz, and T.Pfau, Tuning the dipolar interaction in quantum gases, Phys. Rev. Lett. 89(13), 130401(2002)
CrossRef ADS Google scholar
[5]
Y.Li, J.Liu, W.Pang, and B. A.Malomed, Matterwave solitons supported by field-induced dipole–dipole repulsion with spatially modulated strength, Phys. Rev. A88(5), 053630(2013)
CrossRef ADS Google scholar
[6]
T.Lahaye, T.Koch, B.Fröhlich, M.Fattori, J.Metz, A.Griesmaier, S.Giovanazzi, and T.Pfau, Strong dipolar effects in a quantum ferrofluid, Nature448(7154), 672(2007)
CrossRef ADS Google scholar
[7]
H.Saito, Y.Kawaguchi, and M.Ueda, Ferrofluidity in a two-component dipolar Bose–Einstein condensate, Phys. Rev. Lett. 102(23), 230403(2009)
CrossRef ADS Google scholar
[8]
H.Kadau, M.Schmitt, M.Wenzel, C.Wink, T.Maier, I.Ferrier-Barbut, and T.Pfau, Observing the Rosensweig instability of a quantum ferrofluid, Nature530(7589), 194(2016)
CrossRef ADS Google scholar
[9]
R.Richterand I. V.Barashenkov, Two-dimensional solitons on the surface of magnetic fluids, Phys. Rev. Lett. 94(18), 184503(2005)
CrossRef ADS Google scholar
[10]
L.Santos, G. V.Shlyapnikov, and M.Lewenstein, Roton–Maxon spectrum and stability of trapped dipolar Bose–Einstein condensates, Phys. Rev. Lett. 90(25), 250403(2003)
CrossRef ADS Google scholar
[11]
M.Klawunn, R.Nath, P.Pedri, andL.Santos, Transverse instability of straight vortex lines in dipolar Bose– Einstein condensates, Phys. Rev. Lett. 100(24), 240403(2008)
CrossRef ADS Google scholar
[12]
R. M.Wilson, S.Ronen, J. L.Bohn, and H.Pu, Manifestations of the roton mode in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 100(24), 245302(2008)
CrossRef ADS Google scholar
[13]
D.Hufnagl, R.Kaltseis, V.Apaja, and R. E.Zillich, Roton–roton crossover in strongly correlated dipolar Bose–Einstein Condensates, Phys. Rev. Lett. 107(6), 065303(2011)
CrossRef ADS Google scholar
[14]
R.Nathand L.Santos, Faraday patterns in twodimensional dipolar Bose–Einstein condensates, Phys. Rev. A81(3), 033626(2010)
CrossRef ADS Google scholar
[15]
K.komy, R.Nath, and L.Santos, Faraday patterns in coupled one-dimensional dipolar condensates, Phys. Rev. A86(2), 023620(2012)
CrossRef ADS Google scholar
[16]
A.Bühlerand H. P.Büchler, Supersolid phase in atomic gases with magnetic dipole interaction, Phys. Rev. A84(2), 023607(2011)
CrossRef ADS Google scholar
[17]
A.Maluckov, G.Gligoric, Lj.Hadžievski, B. A.Malomed, and T.Pfau, Stable periodic density waves in dipolar Bose–Einstein condensates trapped in optical lattices, Phys. Rev. Lett. 108(14), 140402(2012)
CrossRef ADS Google scholar
[18]
C.Ticknor, R. M.Wilson, and J. L.Bohn, Anisotropic superfluidity in a dipolar Bose gas, Phys. Rev. Lett. 106(6), 065301(2011)
CrossRef ADS Google scholar
[19]
A. A.Wood, B. H. J.McKellar, and A. M.Martin, Persistent superfluid flow arising from the He–McKellar– Wilkens effect in molecular dipolar condensates, Phys. Rev. Lett. 116(25), 250403(2016)
CrossRef ADS Google scholar
[20]
P. M.Lushnikov, Collapse of Bose–Einstein condensates with dipole–dipole interactions, Phys. Rev. A66, 051601(2002)
CrossRef ADS Google scholar
[21]
D. C. E.Bortolotti, S.Ronen, J. L.Bohn, and D.Blume, Scattering length instability in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 97(16), 160402(2006)
CrossRef ADS Google scholar
[22]
C.Ticknor, N. G.Parker,A.Melatos, S. L.Cornish, D. H. J.O’Dell, and A. M.Martin, Collapse times of dipolar Bose–Einstein condensates, Phys. Rev. A78, 061607(2008)
CrossRef ADS Google scholar
[23]
T.Lahaye, J.Metz, B.Fröhlich, T.Koch, M.Meister, A.Griesmaier, T.Pfau, H.Saito, Y.Kawaguchi, and M.Ueda, d-wave collapse and explosion of a dipolar Bose– Einstein condensate, Phys. Rev. Lett. 101(8), 080401(2008)
CrossRef ADS Google scholar
[24]
I.Ferrier-Barbut, H.Kadau, M.Schmitt, M.Wenzel, and T.Pfau, Observation of quantum droplets in a strongly dipolar Bose gas, Phys. Rev. Lett. 116(21), 215301(2016)
CrossRef ADS Google scholar
[25]
K.-T.Xiand H.Saito, Droplet formation in a Bose– Einstein condensate with strong dipole–dipole interaction, Phys. Rev. A93, 011604(2016)
CrossRef ADS Google scholar
[26]
F.Wächtlerand L.Santos, Quantum filaments in dipolar Bose–Einstein condensates, Phys. Rev. A93, 061603(2016)
CrossRef ADS Google scholar
[27]
D.Baillie, R. M.Wilson, R. N.Bisset, and P. B.Blakie, Self-bound dipolar droplet: A localized matter wave in free space, Phys. Rev. A94, 021602(2016)
CrossRef ADS Google scholar
[28]
M.Klawunnand L.Santos, Hybrid multisite excitations in dipolar condensates in optical lattices, Phys. Rev. A80(1), 013611(2009)
CrossRef ADS Google scholar
[29]
S.Müller, J.Billy, E. A. L.Henn, H.Kadau, A.Griesmaier, M.Jona-Lasinio, L.Santos, and T.Pfau, Stability of a dipolar Bose–Einstein condensate in a onedimensional lattice, Phys. Rev. A84(5), 053601(2011)
CrossRef ADS Google scholar
[30]
R. M.Wilsonand J. L.Bohn, Emergent structure in a dipolar Bose gas in a one-dimensional lattice, Phys. Rev. A83(2), 023623(2011)
CrossRef ADS Google scholar
[31]
K.Gawryluk, K.Bongs, and M.Brewczyk, How to observe dipolar Effects in spinor Bose–Einstein condensates, Phys. Rev. Lett. 106(14), 140403(2011)
CrossRef ADS Google scholar
[32]
Q.Zhaoand Q.Gu, Trapped Bose–Einstein condensates in synthetic magnetic field, Front. Phys. 10(5), 100306(2015)
CrossRef ADS Google scholar
[33]
W.Królikowski, O.Bang, N. I.Nikolov, D.Neshev, J.Wyller, J. J.Rasmussen, andD.Edmundson, Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media, J. Opt. B Quantum Semiclassical Opt. 6(5), S288(2004)
CrossRef ADS Google scholar
[34]
M.Pecciantiand G.Assanto, Nematicons, Phys. Rep. 516(4–5), 147(2012)
CrossRef ADS Google scholar
[35]
W.Królikowskiand O.Bang, Solitons in nonlocal nonlinear media: Exact solutions, Phys. Rev. E63(1), 016610(2000)
CrossRef ADS Google scholar
[36]
S.Skupin, O.Bang, D.Edmundson, and W.Krolikowski,Stability of two-dimensional spatial solitons in nonlocal nonlinear media, Phys. Rev. E73(6), 066603(2006)
CrossRef ADS Google scholar
[37]
P.Pedriand L.Santos, Two-dimensional bright solitons in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 95(20), 200404(2005)
CrossRef ADS Google scholar
[38]
I.Tikhonenkov, B. A.Malomed, and A.Vardi, Anisotropic solitons in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 100(9), 090406(2008)
CrossRef ADS Google scholar
[39]
J.Cuevas, B. A.Malomed, P. G.Kevrekidis, and D. J.Frantzeskakis, Solitons in quasi-one-dimensional Bose– Einstein condensates with competing dipolar and local interactions, Phys. Rev. A79(5), 053608(2009)
CrossRef ADS Google scholar
[40]
F.Kh. Abdullaev, A.Gammal, B. A.Malomed, and L.Tomio, Bright solitons in quasi-one dimensional dipolar condensates with spatially modulated interactions, Phys. Rev. A87(6), 063621(2013)
CrossRef ADS Google scholar
[41]
M.Raghunandan, C.Mishra, K.Lakomy, P.Pedri, L.Santos, and R.Nath, Two-dimensional bright solitons in dipolar Bose–Einstein condensates with titled dipoles, Phys. Rev. A92(1), 013637(2015)
CrossRef ADS Google scholar
[42]
S. K.Adhikariand L. E.Young-S, Statics and dynamics of a binary dipolar Bose–Einstein condensate soliton, J. Phys. B: At. Mol. Opt. Phys. 47(1), 015302(2014)
CrossRef ADS Google scholar
[43]
J.Huang, X.Jiang, H.Chen, Z.Fan, W.Pang, and Y.Li, Quadrupolar matter-wave soliton in two-dimensional free space, Front. Phys. 10(4), 100507(2015)
CrossRef ADS Google scholar
[44]
G.Chen, Y.Liu, and H.Wang, Mixed-mode solitons in quadrupolar BECs with spin–orbit coupling, Commun. Nonlinear Sci. Numer. Simul. 48, 318 (2017)
CrossRef ADS Google scholar
[45]
R.Nath, P.Pedri, and L.Santos, Stability of dark solitons in three dimensional dipolar Bose–Einstein condensates, Phys. Rev. Lett. 101(21), 210402(2008)
CrossRef ADS Google scholar
[46]
T.Bland, M. J.Edmonds, N. P.Proukakis, A. M.Martin, D. H. J.O’Dell, and N. G.Parker, Controllable nonlocal interactions between dark solitons in dipolar condensates, Phys. Rev. A92(6), 063601(2015)
CrossRef ADS Google scholar
[47]
K.Pawłowskiand K.Rza ¸żewski, Dipolar dark solitons, New J. Phys. 17(10), 105006(2015)
CrossRef ADS Google scholar
[48]
M. J.Edmonds, T.Bland, D. H. J.O’Dell, and N. G.Parker, Exploring the stability and dynamics of dipolar matter-wave dark solitons, Phys. Rev. A93(6), 063617(2016)
CrossRef ADS Google scholar
[49]
V. M.Lashkin, Two-dimensional nonlocal vortices, multipole solitons, and rotating multisolitons in dipolar Bose–Einstein condensates,Phys. Rev. A75(4), 043607(2007)
CrossRef ADS Google scholar
[50]
I.Tikhonenkov, B. A.Malomed, and A.Vardi, Vortex solitons in dipolar Bose–Einstein condensates, Phys. Rev. A78, 043614(2008)
CrossRef ADS Google scholar
[51]
G.Gligorić, A.Maluckov, L.Hadžievski, and B. A.Malomed, Bright solitons in the one-dimensional discrete Gross–Pitaevskii equation with dipole–dipole interactions, Phys. Rev. A78(6), 063615(2008)
CrossRef ADS Google scholar
[52]
G.Gligorić, A.Maluckov, M.Stepič L.Hadžievski, and B. A.Malomed, Two-dimensional discrete solitons in dipolar Bose–Einstein condensates, Phys. Rev. A81(1), 013633(2010)
CrossRef ADS Google scholar
[53]
H.Chen, Y.Liu, Q.Zhang, Y.Shi, W.Pang, and Y.Li, Dipolar matter-wave solitons in two-dimensional anisotropic discrete lattices, Phys. Rev. A93(5), 053608(2016)
CrossRef ADS Google scholar
[54]
Z.Luo, Y.Li, W.Pang, and Y.Liu, Dipolar matterwave soliton in one-dimensional optical lattice with tunable local and nonlocal nonlinearities, J. Phys. Soc. Jpn. 82(9), 094401(2013)
CrossRef ADS Google scholar
[55]
Y.Xu, Y.Zhang, and C.Zhang, Bright solitons in a twodimensional spin–orbit-coupled dipolar Bose–Einstein condensate, Phys. Rev. A92(1), 013633(2015)
CrossRef ADS Google scholar
[56]
X.Jiang, Z.Fan, Z.Chen, W.Pang, Y.Li, and B. A.Malomed, Two-dimensional solitons in dipolar Bose– Einstein condensates with spin–orbit-coupling, Phys. Rev. A93(2), 023633(2016)
CrossRef ADS Google scholar
[57]
Y.Li, Y.Liu, Z.Fan, W.Pang, S.Fu, and B. A.Malomed, Two-dimensional dipolar gap solitons in free space with spin–orbit coupling, Phys. Rev. A95(6), 063613(2017)
CrossRef ADS Google scholar
[58]
Y.Zhang, M. E.Mossman, T.Busch, P.Engels, and C.Zhang, Properties of spin–orbit-coupled Bose–Einstein condensates, Front. Phys. 11(3), 118103(2016)
CrossRef ADS Google scholar
[59]
B. B.Baizakov, F. Kh.Abdullaev, B. A.Malomed, and M.Salerno, Solitons in Tonks–Girardeau gas with dipolar interactions, J. Phys. At. Mol. Opt. Phys. 42(17), 175302(2009)
CrossRef ADS Google scholar
[60]
Z.Fan, Y.Shi, Y.Liu, W.Pang, Y.Li, and B. A.Malomed, Cross-symmetric dipolar-matter-wave solitons in double-well chains, Phys. Rev. E95(3), 032226(2017)
CrossRef ADS Google scholar
[61]
B. A.Malomed(Ed.), Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations, Berlin: Springer, 2013
CrossRef ADS Google scholar
[62]
B. A.Malomed, Spontaneous symmetry breaking in nonlinear systems: An overview and a simple model, in: Nonlinear Dynamics: Materials, Theory and Experiments, edited by M. Tlidi and M. Clerc, Springer Proceedings in PhysicsVol. 173, Berlin: Springer, 2016 pp 97–112
[63]
S.Trillo, E. M.Wright, G. I.Stegeman, and S.Wabnitz, Soliton switching in fiber nonlinear directional couplers, Opt. Lett. 13(8), 672(1988)
CrossRef ADS Google scholar
[64]
S. R.Friberg, A. M.Weiner, Y.Silberberg, B. G.Sfez, and P. S.Smith, Femtosecond switching in a dual-corefiber nonlinear coupler, Opt. Lett. 13(10), 904(1988)
CrossRef ADS Google scholar
[65]
F. Kh.Abdullaev, R. M.Abrarov, and S. A.Darmanyan, Dynamics of solitons in coupled optical fibers, Opt. Lett. 14(2), 131(1989)
CrossRef ADS Google scholar
[66]
E. M.Wright, G. I.Stegeman, and S.Wabnitz, Solitarywave decay and symmetry-breaking instabilities in twomode fibers, Phys. Rev. A40(8), 4455(1989)
CrossRef ADS Google scholar
[67]
C.Paréand M.Florjańczyk, Approximate model of soliton dynamics in all-optical couplers, Phys. Rev. A41(11), 6287(1990)
CrossRef ADS Google scholar
[68]
N.Akhmedievand A.Ankiewicz, Novel soliton states and bifurcation phenomena in nonlinear fiber couplers, Phys. Rev. Lett. 70(16), 2395(1993)
CrossRef ADS Google scholar
[69]
P. L.Chu, B. A.Malomed, and G. D.Peng, Soliton switching and propagation in nonlinear fiber couplers: Analytical results, J. Opt. Soc. Am. B10(8), 1379(1993)
CrossRef ADS Google scholar
[70]
J. M.Soto-Crespoand N.Akhmediev, Stability of the soliton states in a nonlinear fiber coupler, Phys. Rev. E48(6), 4710(1993)
CrossRef ADS Google scholar
[71]
M.Matuszewski, B. A.Malomed, and M.Trippenbach, Spontaneous symmetry breaking of solitons trapped in a double-channel potential, Phys. Rev. A75(6), 063621(2007)
CrossRef ADS Google scholar
[72]
Y. J.Tsofeand B. A.Malomed, Quasisymmetric and asymmetric gap solitons in linearly coupled Bragg gratings with a phase shift, Phys. Rev. E75(5), 056603(2007)
CrossRef ADS Google scholar
[73]
S. K.Adhikariand B. A.Malomed, Two-component gap solitons with linear interconversion, Phys. Rev. A79(1), 015602(2009)
CrossRef ADS Google scholar
[74]
H.Sakaguchiand B. A.Malomed, Symmetry breaking of solitons in two-component Gross–Pitaevskii equations, Phys. Rev. E83(3), 036608(2011)
CrossRef ADS Google scholar
[75]
Y.Li, B. A.Malomed, M.Feng, and J.Zhou, Double symmetry breaking of solitons in one-dimensional virtual photonic crystals, Phys. Rev. A83(5), 053832(2011)
CrossRef ADS Google scholar
[76]
I. M.Merhasin, B. A.Malomed, and R.Driben, Transition to miscibility in a binary Bose–Einstein condensate induced by linear coupling, J. Phys. B38(7), 877(2005)
CrossRef ADS Google scholar
[77]
G.Herring, P. G.Kevrekidis, B. A.Malomed, R.Carretero-González, and D. J.Frantzeskakis, Symmetry breaking in linearly coupled dynamical lattices, Phys. Rev. E76(6), 066606(2007)
CrossRef ADS Google scholar
[78]
Y.Liu, Y.Guan, H.Li,Z.Luo, and Z.Mai, Nonlinear defect localized modes and composite gray and anti-gray solitons in one-dimensional waveguide arrays with dualflip defects, Opt. Commun. 397, 105(2017)
CrossRef ADS Google scholar
[79]
X.Shi, B. A.Malomed, F.Ye, and X.Chen, Symmetric and asymmetric solitons in a nonlocal nonlinear coupler, Phys. Rev. A85(5), 053839(2012)
CrossRef ADS Google scholar
[80]
Y.Li, J.Liu, W.Pang, and B. A.Malomed, Symmetry breaking in dipolar matter-wave solitons in dual-core couplers, Phys. Rev. A87(1), 013604(2013)
CrossRef ADS Google scholar
[81]
V. A.Brazhnyiand V. V.Konotop, Theory of nonlinear matter waves in optical lattices, Mod. Phys. Lett. B18(14), 627(2004)
CrossRef ADS Google scholar
[82]
O.Morschand M.Oberthaler, Dynamics of Bose– Einstein condensates in optical lattices, Rev. Mod. Phys. 78(1), 179(2006)
CrossRef ADS Google scholar
[83]
A.Trombettoniand A.Smerzi, Discrete solitons and breathers with dilute Bose–Einstein condensates, Phys. Rev. Lett. 86(11), 2353(2001)
CrossRef ADS Google scholar
[84]
G. L.Alfimov, P. G.Kevrekidis, V. V.Konotop, and M.Salerno, Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential, Phys. Rev. E66(4), 046608(2002)
CrossRef ADS Google scholar
[85]
R.Carretero-González, and K.Promislow, Nonlinear excitations in arrays of Bose–Einstein condensates, Phys. Rev. A66, 033610(2002)
CrossRef ADS Google scholar
[86]
P. G.Kevrekidis, The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations, and Physical Perspectives, Springer: Berlin and Heidelberg, 2009
CrossRef ADS Google scholar
[87]
F. K.Abdullaev, B. B.Baizakov, S. A.Darmanyan, V. V.Konotop, and M.Salerno, Nonlinear excitations in arrays of Bose–Einstein condensates, Phys. Rev. A64(4), 043606(2001)
CrossRef ADS Google scholar
[88]
Y.Li, W.Pang, J.Xu, C.Lee, B. A.Malomed, and L.Santos, Long-range transverse Ising model built with dipolar condensates in two-well arrays, New J. Phys. 19(1), 013030(2017)
CrossRef ADS Google scholar
[89]
M. L.Chiofalo,S.Succi, and M. P.Tosi, Ground state of trapped interacting Bose–Einstein condensates by an explicit imaginary-time algorithm, Phys. Rev. E62(5), 7438(2000)
CrossRef ADS Google scholar
[90]
J.Yangand T. I.Lakoba, Accelerated imaginarytime evolution methods for the computation of solitary waves, Stud. Appl. Math. 120(3), 265(2008)
CrossRef ADS Google scholar
[91]
J.Yangand T. I.Lakoba, Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations, Stud. Appl. Math. 118(2), 153(2007)
[92]
G.Ioossand D. D.Joseph, Elementary Stability Bifurcation Theory, New York: Springer, 1980
[93]
Y.Li, W.Pang, S.Fu, and B. A.Malomed, Twocomponent solitons with a spatially modulated linear coupling: Inverted photonic crystals and fused couplers, Phys. Rev. A85(5), 053821(2012)
CrossRef ADS Google scholar
[94]
M.Vakhitovand A.Kolokolov, Stationary solutions of the wave equation in a medium with nonlinearity saturation, Radiophys. Quantum Electron. 16(7), 783(1973)
CrossRef ADS Google scholar
[95]
L.Bergé, Wave collapse in physics: principles and applications to light and plasma waves, Phys. Rep. 303(5–6), 259(1998)
[96]
E. A.Kuznetsovand F.Dias, Bifurcations of solitons and their stability, Phys. Rep. 507(2–3), 43(2011)
CrossRef ADS Google scholar
[97]
S.Inouye, M. R.Andrews, J.Stenger, H. J.Miesner, D. M.Stamper-Kurn, and W.Ketterle, Observation of Feshbach resonances in a Bose–Einstein condensate, Nature392(6672), 151(1998)
CrossRef ADS Google scholar
[98]
Z.Chen, J.Liu, S.Fu, Y.Li, and B. A.Malomed, Discrete solitons and vortices on two-dimensional lattices of PT-symmetric couplers, Opt. Express22(24), 29679 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(12522 KB)

Accesses

Citations

Detail

Sections
Recommended

/