Traversable braneworld wormholes supported by astrophysical observations

Deng Wang, Xin-He Wang

PDF(2451 KB)
PDF(2451 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 139801. DOI: 10.1007/s11467-017-0701-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Traversable braneworld wormholes supported by astrophysical observations

Author information +
History +

Abstract

In this study, we investigate the characteristics and properties of a traversable wormhole constrained by the current astrophysical observations in the framework of modified theories of gravity (MOG). As a concrete case, we study traversable wormhole space–time configurations in the Dvali–Gabadadze–Porrati (DGP) braneworld scenario, which are supported by the effects of the gravity leakage of extra dimensions. We find that the wormhole space–time structure will open in terms of the 2σconfidence level when we utilize the joint constraints supernovae (SNe) Ia+ observational Hubble parameter data (OHD) + Planck+ gravitational wave (GW) and z<0:2874. Furthermore, we obtain several model-independent conclusions, such as (i) the exotic matter threading the wormholes can be divided into four classes during the evolutionary processes of the universe based on various energy conditions; (ii) we can offer a strict restriction to the local wormhole space–time structure by using the current astrophysical observations; and (iii) we can clearly identify a physical gravitational resource for the wormholes supported by astrophysical observations, namely the dark energy components of the universe or equivalent space–time curvature effects from MOG. Moreover, we find that the strong energy condition is always violated at low redshifts.

Keywords

braneworld model / traversable wormholes / astrophysical observations

Cite this article

Download citation ▾
Deng Wang, Xin-He Wang. Traversable braneworld wormholes supported by astrophysical observations. Front. Phys., 2018, 13(1): 139801 https://doi.org/10.1007/s11467-017-0701-y

References

[1]
A. G.Riess, A. V.Filippenko, P.Challis, A.Clocchiatti, A.Diercks, P. M.Garnavich, R. L.Gilliland, C. J.Hogan, S.Jha, R. P.Kirshner, B.Leibundgut, M. M.Phillips, D.Reiss, B. P.Schmidt, R. A.Schommer, R. C.Smith, J.Spyromilio, C.Stubbs, N. B.Suntzeff, andJ.Tonry, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116(3), 1009 (1998)
CrossRef ADS Google scholar
[2]
S.Perlmutter, M. S.Turner, and M.White, Constraining dark energy with SNe Ia and large scale structure, Phys. Rev. Lett. 83(4), 670(1999)
CrossRef ADS Google scholar
[3]
P. A. R.Ade, et al. [Planck Collaboration], Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594, A13(2016)
CrossRef ADS Google scholar
[4]
S.Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61(1), 1 (1989)
CrossRef ADS Google scholar
[5]
E.Witten, Quantum gravity in de Sitter space, arXiv: hep-th/0106109
[6]
R. R.Caldwell, A phantom menace? Cosmological consequences of a dark energy component with supernegative equation of state, Phys. Lett. B545(1–2), 23(2002)
CrossRef ADS Google scholar
[7]
Y.Fujii, Origin of the gravitational constant and particle masses in a scale-invariant scalar-tensor theory, Phys. Rev. D26(10), 2580(1982)
CrossRef ADS Google scholar
[8]
L. H.Ford, Cosmological-constant damping by unstable scalar fields, Phys. Rev. D35(8), 2339(1987)
CrossRef ADS Google scholar
[9]
C.Wetterich, Cosmology and the fate of dilatation symmetry, Nucl. Phys. B302(4), 668(1988)
CrossRef ADS Google scholar
[10]
B.RatraandP. J. E.Peebles, Cosmological consequences of a rolling homogeneous scalar field, Phys. Rev. D37(12), 3406(1988)
CrossRef ADS Google scholar
[11]
S. M.Carroll, Quintessence and the rest of the world: Suppressing long-range interactions, Phys. Rev. Lett.81(15), 3067(1998)
CrossRef ADS Google scholar
[12]
A.Hebeckerand C.Wetterich, Quintessential adjustment of the cosmological constant, Phys. Rev. Lett.86(16), 3339(2000)
[13]
A.Hebeckerand C.Wetterich, Natural quintessence? Phys. Lett. B497(3–4), 281(2001)
[14]
R. R.Caldwell, M.Kamionkovski, and N. N.Weinberg, Phantom energy and cosmic doomsday, Phys. Rev. Lett.91, 071301(2003)
CrossRef ADS Google scholar
[15]
P.WangandX.Meng, Can vacuum decay in our universe? Class. Quantum Gravity22(2), 283(2005)
CrossRef ADS Google scholar
[16]
X.Meng, J.Ren, and M.Hu, Friedmann cosmology with a generalized equation of state and bulk viscosity, Commum. Theor. Phys.47(2), 379(2007)
CrossRef ADS Google scholar
[17]
J.RenandX.Meng, Modified equation of state, scalar field and bulk viscosity in Friedmann universe, Phys. Lett. B636(1), 5 (2006)
CrossRef ADS Google scholar
[18]
J.Renand X.Meng, Cosmological model with viscosity media (dark fluid) described by an effective equation of state, Phys. Lett. B633(1), 1 (2006)
CrossRef ADS Google scholar
[19]
M.Huand X.Meng, Bulk viscous cosmology: Statefinder and entropy, Phys. Lett. B635(4), 186(2006)
CrossRef ADS Google scholar
[20]
X. H.Mengand X.Dou, Friedmann cosmology with bulk viscosity: A concrete model for dark energy, Commum. Theor. Phys.52(2), 377(2009)
CrossRef ADS Google scholar
[21]
X.Douand X.Meng, Bulk viscous cosmology: Unified dark matter, Adv. Astron.1155, 829340(2011)
CrossRef ADS Google scholar
[22]
A.Kamenshchik, U.Moschella, and V.Pasquier, An alternative to quintessence, Phys. Lett. B511(2–4), 265(2001)
CrossRef ADS Google scholar
[23]
S.Capozziello, Curvature quintessence, Int. J. Mod. Phys. D11(04), 483(2002)
CrossRef ADS Google scholar
[24]
S.Capozziello, V. F.Cardone, S.Carloni, and A.Troisi, Curvature quintessence matched with observational data, Int. J. Mod. Phys. D12(10), 1969(2003)
CrossRef ADS Google scholar
[25]
S. M.Carroll, V.Duvvuri, M.Trodden, and M. S.Turner, Is cosmic speed-up due to new gravitational physics? Phys. Rev. D70(4), 043528(2004)
CrossRef ADS Google scholar
[26]
S.Nojiriand S. D.Odintsov, Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration, Phys. Rev. D68(12), 123512(2003)
CrossRef ADS Google scholar
[27]
S.Nojiriand S. D.Odintsov, Unified cosmic history in modified gravity: From F(R) theory to Lorentz noninvariant models, Phys. Rep.505(2–4), 59(2011)
CrossRef ADS Google scholar
[28]
S.Nojiri, S. D.Odintsov, and D.Sáez-Gómez, Cosmological reconstruction of realistic modified F(R) gravities, Phys. Lett. B681, 74(2009)
CrossRef ADS Google scholar
[29]
J. P.Uzan, Cosmological scaling solutions of nonminimally coupled scalar fields, Phys. Rev. D59(12), 123510(1999)
CrossRef ADS Google scholar
[30]
T.Chiba, Quintessence, the gravitational constant, and gravity, Phys. Rev. D60(8), 083508(1999)
CrossRef ADS Google scholar
[31]
V.Sahniand A. A.Starobinsky, Reconstructing dark energy, Int. J. Mod. Phys. D15(12), 2105(2006)
CrossRef ADS Google scholar
[32]
P.Ruiz-Lapuente, Dark energy, gravitation and supernovae, Class. Quantum Gravity24(11), R91(2007)
CrossRef ADS Google scholar
[33]
L.Randalland R.Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett.83(17), 3370(1999)
CrossRef ADS Google scholar
[34]
L.Randalland R.Sundrum, An alternative to compactification, Phys. Rev. Lett.83(23), 4690(1999)
CrossRef ADS Google scholar
[35]
G.Dvali, G.Gabadadze, and M.Porrati, 4-D gravity on a brane in 5-D Minkowski space, Phys. Lett. B485(1–3), 208(2000)
CrossRef ADS Google scholar
[36]
T.Jacobson, Einstein–Aether gravity: A status report, PoS QG-PH: 020(2007)
[37]
T.Jacobson, Extended Horava gravity and Einstein- Aether theory, Phys. Rev. D81(10), 101502(2010)
CrossRef ADS Google scholar
[38]
F.Izaurieta, P.Minning, A.Perez, E.Rodriguez, and P.Salgado, Standard general relativity from Chern-Simons gravity, Phys. Lett. B678(2), 213(2009)
CrossRef ADS Google scholar
[39]
G.Dvaliand G.Gabadadze, Gravity on a brane in infinite volume extra space, Phys. Rev. D63(6), 065007(2001)
CrossRef ADS Google scholar
[40]
C.Deffayet, Cosmology on a brane in Minkowski bulk, Phys. Lett. B502(1–4), 199(2001)
[41]
D.Wangand X.Meng, Wormholes supported by phantom energy from Shan–Chen cosmological fluids, Eur. Phys. J. C76(3), 171(2016)
CrossRef ADS Google scholar
[42]
D.Wangand X.Meng, Modeling phantom energy wormholes from Shan–Chen fluids, arXiv: 1512.03097
[43]
D.Wangand X.Meng, Traversable geometric dark energy wormholes constrained by astrophysical observations, Eur. Phys. J. C76(9), 484(2016)
CrossRef ADS Google scholar
[44]
D.Wangand X.Meng, Traversable holographic dark energy wormholes constrained by astronomical observations, arXiv: 1602.04699
[45]
L.Flamm, Beitrge zur Einsteinschen Gravitations theorie, Phys. Z.17, 448(1916)
[46]
A.Einsteinand N.Rosen, The particle problem in the general theory of relativity, Phys. Rev.48(1), 73(1935)
CrossRef ADS Google scholar
[47]
J. A.Wheeler, Geons, Phys. Rev.97(2), 511(1955)
CrossRef ADS Google scholar
[48]
C. W.Misnerand J. A.Wheeler, Classical physics as geometry: Gravitation, electromagnetism, unquantized charge, and mass as properties of curved empty space, Ann. Phys.2(6), 525(1957)
CrossRef ADS Google scholar
[49]
K. A.Bronnikov, Scalar-tensor theory and scalar charge, Acta Phys. Pol. B4, 251(1973)
[50]
H. G.Ellis, Ether ow through a drainhole – a particle model in general relativity, J. Math. Phys.14(1), 104(1973)
CrossRef ADS Google scholar
[51]
H. G.Ellis, The evolving, flowless drain hole: A nongravitating particle model in general relativity theory, Gen. Relativ. Gravit.10(2), 105(1979)
CrossRef ADS Google scholar
[52]
M. S.Morrisand K. S.Thorne, Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity, Am. J. Phys.56(5), 395(1988)
CrossRef ADS Google scholar
[53]
M.Visser, Traversable wormholes: Some simple examples, Phys. Rev. D39(10), 3182(1989)
CrossRef ADS Google scholar
[54]
M.Visser, Traversable wormholes from surgically modified Schwarzschild space–times, Nucl. Phys. B328(1), 203(1989)
CrossRef ADS Google scholar
[55]
M.Visser, Quantum mechanical stabilization of Minkowski signature wormholes, Phys. Lett. B242(1), 24(1990)
CrossRef ADS Google scholar
[56]
E.Poissonand M.Visser, Thin shell wormholes: Linearization stability, Phys. Rev. D52(12), 7318(1995)
CrossRef ADS Google scholar
[57]
S. V.Sushkov, Wormholes supported by a phantom energy, Phys. Rev. D71(4), 043520(2005)
CrossRef ADS Google scholar
[58]
F. S. N.Lobo, Phantom energy traversable wormholes, Phys. Rev. D71(8), 084011(2005)
CrossRef ADS Google scholar
[59]
D.WangandX.Meng, Observational constraints and diagnostics for time-dependent dark energy models, arXiv: 1603.00699
[60]
D.Wangand X.Meng, Observational constraints and differential diagnosis for cosmic evolutionary models,arXiv: 1603.08112
[61]
D.Wangand X.Meng, Reconstructing f(R) gravity from viscous cosmology constrained by observations, arXiv: 1604.02951
[62]
C.Deffayet, G.Dvali, and G.Gabadadze, Accelerated universe from gravity leaking to extra dimensions, Phys. Rev. D65(4), 044023(2002)
CrossRef ADS Google scholar
[63]
B. P.Abbott, et al. [LIGO Scientific Collaboration and Virgo Collaboration], Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett.116(6), 061102(2016)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2451 KB)

Accesses

Citations

Detail

Sections
Recommended

/