Traversable braneworld wormholes supported by astrophysical observations

Deng Wang , Xin-He Wang

Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 139801

PDF (2451KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 139801 DOI: 10.1007/s11467-017-0701-y
RESEARCH ARTICLE

Traversable braneworld wormholes supported by astrophysical observations

Author information +
History +
PDF (2451KB)

Abstract

In this study, we investigate the characteristics and properties of a traversable wormhole constrained by the current astrophysical observations in the framework of modified theories of gravity (MOG). As a concrete case, we study traversable wormhole space–time configurations in the Dvali–Gabadadze–Porrati (DGP) braneworld scenario, which are supported by the effects of the gravity leakage of extra dimensions. We find that the wormhole space–time structure will open in terms of the 2σconfidence level when we utilize the joint constraints supernovae (SNe) Ia+ observational Hubble parameter data (OHD) + Planck+ gravitational wave (GW) and z<0:2874. Furthermore, we obtain several model-independent conclusions, such as (i) the exotic matter threading the wormholes can be divided into four classes during the evolutionary processes of the universe based on various energy conditions; (ii) we can offer a strict restriction to the local wormhole space–time structure by using the current astrophysical observations; and (iii) we can clearly identify a physical gravitational resource for the wormholes supported by astrophysical observations, namely the dark energy components of the universe or equivalent space–time curvature effects from MOG. Moreover, we find that the strong energy condition is always violated at low redshifts.

Keywords

braneworld model / traversable wormholes / astrophysical observations

Cite this article

Download citation ▾
Deng Wang, Xin-He Wang. Traversable braneworld wormholes supported by astrophysical observations. Front. Phys., 2018, 13(1): 139801 DOI:10.1007/s11467-017-0701-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. G.Riess, A. V.Filippenko, P.Challis, A.Clocchiatti, A.Diercks, P. M.Garnavich, R. L.Gilliland, C. J.Hogan, S.Jha, R. P.Kirshner, B.Leibundgut, M. M.Phillips, D.Reiss, B. P.Schmidt, R. A.Schommer, R. C.Smith, J.Spyromilio, C.Stubbs, N. B.Suntzeff, andJ.Tonry, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116(3), 1009 (1998)

[2]

S.Perlmutter, M. S.Turner, and M.White, Constraining dark energy with SNe Ia and large scale structure, Phys. Rev. Lett. 83(4), 670(1999)

[3]

P. A. R.Ade, et al. [Planck Collaboration], Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594, A13(2016)

[4]

S.Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61(1), 1 (1989)

[5]

E.Witten, Quantum gravity in de Sitter space, arXiv: hep-th/0106109

[6]

R. R.Caldwell, A phantom menace? Cosmological consequences of a dark energy component with supernegative equation of state, Phys. Lett. B545(1–2), 23(2002)

[7]

Y.Fujii, Origin of the gravitational constant and particle masses in a scale-invariant scalar-tensor theory, Phys. Rev. D26(10), 2580(1982)

[8]

L. H.Ford, Cosmological-constant damping by unstable scalar fields, Phys. Rev. D35(8), 2339(1987)

[9]

C.Wetterich, Cosmology and the fate of dilatation symmetry, Nucl. Phys. B302(4), 668(1988)

[10]

B.RatraandP. J. E.Peebles, Cosmological consequences of a rolling homogeneous scalar field, Phys. Rev. D37(12), 3406(1988)

[11]

S. M.Carroll, Quintessence and the rest of the world: Suppressing long-range interactions, Phys. Rev. Lett.81(15), 3067(1998)

[12]

A.Hebeckerand C.Wetterich, Quintessential adjustment of the cosmological constant, Phys. Rev. Lett.86(16), 3339(2000)

[13]

A.Hebeckerand C.Wetterich, Natural quintessence? Phys. Lett. B497(3–4), 281(2001)

[14]

R. R.Caldwell, M.Kamionkovski, and N. N.Weinberg, Phantom energy and cosmic doomsday, Phys. Rev. Lett.91, 071301(2003)

[15]

P.WangandX.Meng, Can vacuum decay in our universe? Class. Quantum Gravity22(2), 283(2005)

[16]

X.Meng, J.Ren, and M.Hu, Friedmann cosmology with a generalized equation of state and bulk viscosity, Commum. Theor. Phys.47(2), 379(2007)

[17]

J.RenandX.Meng, Modified equation of state, scalar field and bulk viscosity in Friedmann universe, Phys. Lett. B636(1), 5 (2006)

[18]

J.Renand X.Meng, Cosmological model with viscosity media (dark fluid) described by an effective equation of state, Phys. Lett. B633(1), 1 (2006)

[19]

M.Huand X.Meng, Bulk viscous cosmology: Statefinder and entropy, Phys. Lett. B635(4), 186(2006)

[20]

X. H.Mengand X.Dou, Friedmann cosmology with bulk viscosity: A concrete model for dark energy, Commum. Theor. Phys.52(2), 377(2009)

[21]

X.Douand X.Meng, Bulk viscous cosmology: Unified dark matter, Adv. Astron.1155, 829340(2011)

[22]

A.Kamenshchik, U.Moschella, and V.Pasquier, An alternative to quintessence, Phys. Lett. B511(2–4), 265(2001)

[23]

S.Capozziello, Curvature quintessence, Int. J. Mod. Phys. D11(04), 483(2002)

[24]

S.Capozziello, V. F.Cardone, S.Carloni, and A.Troisi, Curvature quintessence matched with observational data, Int. J. Mod. Phys. D12(10), 1969(2003)

[25]

S. M.Carroll, V.Duvvuri, M.Trodden, and M. S.Turner, Is cosmic speed-up due to new gravitational physics? Phys. Rev. D70(4), 043528(2004)

[26]

S.Nojiriand S. D.Odintsov, Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration, Phys. Rev. D68(12), 123512(2003)

[27]

S.Nojiriand S. D.Odintsov, Unified cosmic history in modified gravity: From F(R) theory to Lorentz noninvariant models, Phys. Rep.505(2–4), 59(2011)

[28]

S.Nojiri, S. D.Odintsov, and D.Sáez-Gómez, Cosmological reconstruction of realistic modified F(R) gravities, Phys. Lett. B681, 74(2009)

[29]

J. P.Uzan, Cosmological scaling solutions of nonminimally coupled scalar fields, Phys. Rev. D59(12), 123510(1999)

[30]

T.Chiba, Quintessence, the gravitational constant, and gravity, Phys. Rev. D60(8), 083508(1999)

[31]

V.Sahniand A. A.Starobinsky, Reconstructing dark energy, Int. J. Mod. Phys. D15(12), 2105(2006)

[32]

P.Ruiz-Lapuente, Dark energy, gravitation and supernovae, Class. Quantum Gravity24(11), R91(2007)

[33]

L.Randalland R.Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett.83(17), 3370(1999)

[34]

L.Randalland R.Sundrum, An alternative to compactification, Phys. Rev. Lett.83(23), 4690(1999)

[35]

G.Dvali, G.Gabadadze, and M.Porrati, 4-D gravity on a brane in 5-D Minkowski space, Phys. Lett. B485(1–3), 208(2000)

[36]

T.Jacobson, Einstein–Aether gravity: A status report, PoS QG-PH: 020(2007)

[37]

T.Jacobson, Extended Horava gravity and Einstein- Aether theory, Phys. Rev. D81(10), 101502(2010)

[38]

F.Izaurieta, P.Minning, A.Perez, E.Rodriguez, and P.Salgado, Standard general relativity from Chern-Simons gravity, Phys. Lett. B678(2), 213(2009)

[39]

G.Dvaliand G.Gabadadze, Gravity on a brane in infinite volume extra space, Phys. Rev. D63(6), 065007(2001)

[40]

C.Deffayet, Cosmology on a brane in Minkowski bulk, Phys. Lett. B502(1–4), 199(2001)

[41]

D.Wangand X.Meng, Wormholes supported by phantom energy from Shan–Chen cosmological fluids, Eur. Phys. J. C76(3), 171(2016)

[42]

D.Wangand X.Meng, Modeling phantom energy wormholes from Shan–Chen fluids, arXiv: 1512.03097

[43]

D.Wangand X.Meng, Traversable geometric dark energy wormholes constrained by astrophysical observations, Eur. Phys. J. C76(9), 484(2016)

[44]

D.Wangand X.Meng, Traversable holographic dark energy wormholes constrained by astronomical observations, arXiv: 1602.04699

[45]

L.Flamm, Beitrge zur Einsteinschen Gravitations theorie, Phys. Z.17, 448(1916)

[46]

A.Einsteinand N.Rosen, The particle problem in the general theory of relativity, Phys. Rev.48(1), 73(1935)

[47]

J. A.Wheeler, Geons, Phys. Rev.97(2), 511(1955)

[48]

C. W.Misnerand J. A.Wheeler, Classical physics as geometry: Gravitation, electromagnetism, unquantized charge, and mass as properties of curved empty space, Ann. Phys.2(6), 525(1957)

[49]

K. A.Bronnikov, Scalar-tensor theory and scalar charge, Acta Phys. Pol. B4, 251(1973)

[50]

H. G.Ellis, Ether ow through a drainhole – a particle model in general relativity, J. Math. Phys.14(1), 104(1973)

[51]

H. G.Ellis, The evolving, flowless drain hole: A nongravitating particle model in general relativity theory, Gen. Relativ. Gravit.10(2), 105(1979)

[52]

M. S.Morrisand K. S.Thorne, Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity, Am. J. Phys.56(5), 395(1988)

[53]

M.Visser, Traversable wormholes: Some simple examples, Phys. Rev. D39(10), 3182(1989)

[54]

M.Visser, Traversable wormholes from surgically modified Schwarzschild space–times, Nucl. Phys. B328(1), 203(1989)

[55]

M.Visser, Quantum mechanical stabilization of Minkowski signature wormholes, Phys. Lett. B242(1), 24(1990)

[56]

E.Poissonand M.Visser, Thin shell wormholes: Linearization stability, Phys. Rev. D52(12), 7318(1995)

[57]

S. V.Sushkov, Wormholes supported by a phantom energy, Phys. Rev. D71(4), 043520(2005)

[58]

F. S. N.Lobo, Phantom energy traversable wormholes, Phys. Rev. D71(8), 084011(2005)

[59]

D.WangandX.Meng, Observational constraints and diagnostics for time-dependent dark energy models, arXiv: 1603.00699

[60]

D.Wangand X.Meng, Observational constraints and differential diagnosis for cosmic evolutionary models,arXiv: 1603.08112

[61]

D.Wangand X.Meng, Reconstructing f(R) gravity from viscous cosmology constrained by observations, arXiv: 1604.02951

[62]

C.Deffayet, G.Dvali, and G.Gabadadze, Accelerated universe from gravity leaking to extra dimensions, Phys. Rev. D65(4), 044023(2002)

[63]

B. P.Abbott, et al. [LIGO Scientific Collaboration and Virgo Collaboration], Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett.116(6), 061102(2016)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (2451KB)

794

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/