Signature of the hydrogen-bonded environment of liquid water in X-ray emission spectra from first-principles calculations

Huaze Shen, Mohan Chen, Zhaoru Sun, Limei Xu, Enge Wang, Xifan Wu

Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 138204.

PDF(3016 KB)
PDF(3016 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 138204. DOI: 10.1007/s11467-017-0700-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Signature of the hydrogen-bonded environment of liquid water in X-ray emission spectra from first-principles calculations

Author information +
History +

Abstract

Based on ab initio molecular dynamics simulations and density functional theory, we performed a systematic theoretical study to elucidate the correlation between the H-bonded environment and Xray emission spectra of liquid water. The spectra generated from excited water molecules embedded in an intact H-bonded environment yield broader spectral peaks and a larger spectral range than the spectra generated from water molecules in a broken H-bonded environment. Such differences are caused by the local electronic structures on the excited water molecules within the core-hole lifetime that evolve differently through the rearrangement of neighboring water molecules in different H-bonded environments.

Keywords

water / density functional theory / ab initio molecular dynamics / X-ray emission spectra / hydrogen bond / core hole

Cite this article

Download citation ▾
Huaze Shen, Mohan Chen, Zhaoru Sun, Limei Xu, Enge Wang, Xifan Wu. Signature of the hydrogen-bonded environment of liquid water in X-ray emission spectra from first-principles calculations. Front. Phys., 2018, 13(1): 138204 https://doi.org/10.1007/s11467-017-0700-z

References

[1]
P.Gallo, K.Amann-Winkel, C. A.Angell, M. A.Anisimov, F.Caupin, C.Chakravarty, E.Lascaris, T.Loerting, A. Z.Panagiotopoulos, J.Russo, J. A.Sellberg, H. E.Stanley, H.Tanaka, C.Vega, L.Xu, and L. G. M.Pettersson, Water: A tale of two liquids, Chem. Rev. 116(13), 7463 (2016)
CrossRef ADS Google scholar
[2]
L. G. M.Pettersson, R. H.Henchman, and A.Nilsson, Water – The most anomalous liquid, Chem. Rev. 116(13), 7459(2016)
CrossRef ADS Google scholar
[3]
P.Ball, Water as an active constituent in cell biology, Chem. Rev. 108(1), 74(2008)
CrossRef ADS Google scholar
[4]
J. C.Palmer, F.Martelli, Y.Liu, R.Car, A. Z.Panagiotopoulos, and P. G.Debenedetti, Metastable liquidliquid transition in a molecular model of water, Nature510(7505), 385(2014)
CrossRef ADS Google scholar
[5]
C. J.Fecko, J. D.Eaves, J. J.Loparo, A.Tokmakoff, and P. L.Geissler, Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water, Science301(5640), 1698(2003)
CrossRef ADS Google scholar
[6]
T.Head-Gordonand G.Hura, Water structure from scattering experiments and simulation, Chem. Rev. 102(8), 2651(2002)
CrossRef ADS Google scholar
[7]
J. A.Sellberg, C.Huang, T. A.McQueen, N. D.Loh, H.Laksmono, , Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature, Nature510(7505), 381(2014)
CrossRef ADS Google scholar
[8]
T.Tokushima, Y.Harada, O.Takahashi, Y.Senba, H.Ohashi, L. G. M.Pettersson, A.Nilsson, and S.Shin, High resolution X-ray emission spectroscopy of liquid water: The observation of two structural motifs, Chem. Phys. Lett. 460(4–6), 387(2008)
CrossRef ADS Google scholar
[9]
F. H.Stillinger, Water revisited, Science209(4455), 451(1980)
CrossRef ADS Google scholar
[10]
G. E.Walrafen, Effects of equilibrium H-bond distance and angle changes on Raman intensities from water, J. Chem. Phys. 120(10), 4868(2004)
CrossRef ADS Google scholar
[11]
M.Vedamuthu, S.Singh, and G. W.Robinson, Properties of liquid water: Origin of the density anomalies, J. Phys. Chem. 98(9), 2222(1994)
CrossRef ADS Google scholar
[12]
R.Bukowski, K.Szalewicz, G. C.Groenenboom, and A.van der Avoird, Prediction of the properties of water from first principles, Science315(5816), 1249(2007)
CrossRef ADS Google scholar
[13]
B.Guillot, A reappraisal of what we have learnt during three decades of computer simulations on water, J. Mol. Liq. 101(1–3), 219(2002)
CrossRef ADS Google scholar
[14]
R.Carand M.Parrinello, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett. 55(22), 2471(1985)
CrossRef ADS Google scholar
[15]
J. D.Eaves, J. J.Loparo, C. J.Fecko, S. T.Roberts, A.Tokmakoff, and P. L.Geissler, Hydrogen bonds in liquid water are broken only fleetingly, Proc. Natl. Acad. Sci. USA102(37), 13019(2005)
CrossRef ADS Google scholar
[16]
G. S.Fanourgakis, G. K.Schenter, and S. S.Xantheas, A quantitative account of quantum effects in liquid water, J. Chem. Phys. 125(14), 141102(2006)
CrossRef ADS Google scholar
[17]
R.Bukowski, K.Szalewicz, G. C.Groenenboom, and A.Van Der Avoird, Polarizable interaction potential for water from coupled cluster calculations (II): Applications to dimer spectra, virial coefficients, and simulations of liquid water, J. Chem. Phys. 128(9), 094314(2008)
CrossRef ADS Google scholar
[18]
F.Paesani, S.Iuchi, and G. A.Voth, Quantum effects in liquid water from an ab initio-based polarizable force field, J. Chem. Phys. 127(7), 074506(2007)
CrossRef ADS Google scholar
[19]
Y. A.Mantz, B.Chen, and G. J.Martyna, Structural correlations and motifs in liquid water at selected temperatures: ab initio and empirical model predictions, J. Phys. Chem. B110(8), 3540(2006)
CrossRef ADS Google scholar
[20]
A.Nilssonand L. G. M.Pettersson, The structural origin of anomalous properties of liquid water, Nat. Commun. 6, 8998(2015)
CrossRef ADS Google scholar
[21]
J. D.Smith, C. D.Cappa, K. R.Wilson, R. C.Cohen, P. L.Geissler, and R. J.Saykally, Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water, Proc. Natl. Acad. Sci. USA102(40), 14171(2005)
CrossRef ADS Google scholar
[22]
J. D.Bernaland R. H.Fowler, A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions, J. Chem. Phys. 1(8), 515(1933)
CrossRef ADS Google scholar
[23]
A. K.Soper, The quest for the structure of water and aqueous solutions, J. Phys.: Condens. Matter9(13), 2717(1997)
CrossRef ADS Google scholar
[24]
A. K.Soper, The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa, Chem. Phys. 258(2–3), 121(2000)
CrossRef ADS Google scholar
[25]
S. A.Corcelliand J. L.Skinner, Infrared and Ramute HOD in liquid H2O and D2O from 10 to 90 degrees celsius, J. Phys. Chem. A109(28), 6154(2005)
CrossRef ADS Google scholar
[26]
T. S.Carlton, Using heat capacity and compressibility to choose among two-state models of liquid water, J. Phys. Chem. B111(47), 13398(2007)
CrossRef ADS Google scholar
[27]
H.Tanaka, Simple physical model of liquid water, J. Chem. Phys. 112(2), 799(2000)
CrossRef ADS Google scholar
[28]
A.Zeidler, P. S.Salmon, H. E.Fischer, J. C.Neuefeind, J.Mike Simonson, and T. E.Markland, Isotope effects in water as investigated by neutron diffraction and path integral molecular dynamics, J. Phys.: Condens. Matter24(28), 284126(2012)
CrossRef ADS Google scholar
[29]
J. C.Dore, M.Garawi, and M. C.Bellissent-Funel, Neutron diffraction studies of the structure of water at ambient temperatures, revisited [a review of past developments and current problems], Mol. Phys. 102(19–20), 2015(2004)
CrossRef ADS Google scholar
[30]
M. C.Bellissent-Funel, and L.Bosio, A neutron scattering study of liquid D2O under pressure and at various temperatures, J. Chem. Phys. 102(9), 3727(1995)
CrossRef ADS Google scholar
[31]
J. C.Dore, M. A. M.Sufi, and M. C.Bellissent-Funel, Structural change in D2O water as a function of temperature: The isochoric temperature derivative function for neutron diffraction, Phys. Chem. Chem. Phys. 2(8), 1599(2000)
CrossRef ADS Google scholar
[32]
A. K.Soper, The radial distribution functions of water as derived from radiation total scattering experiments: Is there anything we can say for sure? ISRN Phys. Chem. 2013, 1 (2013)
CrossRef ADS Google scholar
[33]
P.Postorino, M. A.Ricci, and A. K.Soper, Water above its boiling point: Study of the temperature and density dependence of the partial pair correlation functions (I): Neutron diffraction experiment, J. Chem. Phys. 101(5), 4123(1994)
CrossRef ADS Google scholar
[34]
K.Amann-Winkel, M. C.Bellissent-Funel, L. E.Bove, T.Loerting, A.Nilsson,A.Paciaroni, D.Schlesinger, and L.Skinner, X-ray and neutron scattering of water, Chem. Rev. 116(13), 7570(2016)
CrossRef ADS Google scholar
[35]
L. B.Skinner,C.Huang, D.Schlesinger, L. G. M.Pettersson, A.Nilsson, and C. J.Benmore, Benchmark oxygen-oxygen pair-distribution function of ambient water from X-ray diffraction measurements with a wide Q-range, J. Chem. Phys. 138(7), 074506(2013)
CrossRef ADS Google scholar
[36]
J.Morganand B. E.Warren, X-ray analysis of the structure of water, J. Chem. Phys. 6(11), 666(1938)
CrossRef ADS Google scholar
[37]
H.Ohtaki, T.Radnai, and T.Yamaguchi, Structure of water under subcritical and supercritical conditions studied by solution X-ray diffraction, Chem. Soc. Rev. 26(1), 41(1997)
CrossRef ADS Google scholar
[38]
J. M.Sorenson, G.Hura, R. M.Glaeser, and T.Head- Gordon, What can X-ray scattering tell us about the radial distribution functions of water? J. Chem. Phys. 113(20), 9149(2000)
CrossRef ADS Google scholar
[39]
C.Huang, T. M.Weiss, D.Nordlund, K. T.Wikfeldt, L. G. M.Pettersson, and A.Nilsson, Increasing correlation length in bulk supercooled H2O, D2O, and NaCl solution determined from small angle X-ray scattering, J. Chem. Phys. 133(13), 134504(2010)
CrossRef ADS Google scholar
[40]
F. N.KeutschandR. J.Saykally, Water clusters: Untangling the mysteries of the liquid, one molecule at a time, Proc. Natl. Acad. Sci. USA98(19), 10533(2001)
CrossRef ADS Google scholar
[41]
K. A.Tayand F.Bresme, Kinetics of hydrogen-bond rearrangements in bulk water, Phys. Chem. Chem. Phys. 11(2), 409(2009)
CrossRef ADS Google scholar
[42]
R.Laenen, C.Rauscher, and A.Laubereau, Dynamics of local substructures in water observed by ultrafast infrared hole burning, Phys. Rev. Lett. 80(12), 2622(1998)
CrossRef ADS Google scholar
[43]
R. H.Henchmanand S. J.Irudayam, Topological hydrogen-bond definition to characterize the structure and dynamics of liquid water, J. Phys. Chem. B114(50), 16792(2010)
CrossRef ADS Google scholar
[44]
H. J.Bakkerand J. L.Skinner, Vibrational spectroscopy as a probe of structure and dynamics in liquid water, Chem. Rev. 110(3), 1498(2010)
CrossRef ADS Google scholar
[45]
K.Ramasesha, S. T.Roberts, R. A.Nicodemus, A.Mandal, and A.Tokmakoff, Ultrafast 2D IR anisotropy of water reveals reorientation during hydrogen-bond switching, J. Chem. Phys. 135(5), 054509(2011)
CrossRef ADS Google scholar
[46]
R.Kumar, J. R.Schmidt, and J. L.Skinner, Hydrogen bonding definitions and dynamics in liquid water, J. Chem. Phys. 126(20), 204107(2007)
CrossRef ADS Google scholar
[47]
F.Perakis, L. D.Marco, A.Shalit, F.Tang, Z. R.Kann, T. D.Kühne, R.Torre, M.Bonn, and Y.Nagata, Vibrational spectroscopy and dynamics of water, Chem. Rev.116(13), 7590(2016)
CrossRef ADS Google scholar
[48]
T.Fransson, Y.Harada, N.Kosugi, N. A.Besley, B.Winter, J. J.Rehr, L. G. M.Pettersson, and A.Nilsson, X-ray and electron spectroscopy of water, Chem. Rev. 116(13), 7551(2016)
CrossRef ADS Google scholar
[49]
Ph.Wernet, D.Nordlund, U.Bergmann, M.Cavalleri, M.Odelius, H.Ogasawara, L. Å.Näslund, T. K.Hirsch, L.Ojamäe, P.Glatzel, L. G. M.Pettersson, and A.Nilsson, The structure of the first coordination shell in liquid water, Science304(5673), 995(2004)
CrossRef ADS Google scholar
[50]
J. A.Sellberg, S.Kaya, V. H.Segtnan, C.Chen, T.Tyliszczak, H.Ogasawara, D.Nordlund, L. G. M.Pettersson, and A.Nilsson, Comparison of X-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section, J. Chem. Phys. 141(3), 034507(2014)
CrossRef ADS Google scholar
[51]
B.Hetényi, F.De Angelis, P.Giannozzi, and R.Car, Calculation of near-edge X-ray-absorption fine structure at finite temperatures: Spectral signatures of hydrogen bond breaking in liquid water, J. Chem. Phys. 120(18), 8632(2004)
CrossRef ADS Google scholar
[52]
T.Head-Gordonand M. E.Johnson, Tetrahedral structure or chains for liquid water, Proc. Natl. Acad. Sci. USA103(21), 7973(2006)
CrossRef ADS Google scholar
[53]
L.Kong, X.Wu, and R.Car, Roles of quantum nuclei and inhomogeneous screening in the X-ray absorption spectra of water and ice, Phys. Rev. B86(13), 134203(2012)
CrossRef ADS Google scholar
[54]
J. D.Smith, C. D.Cappa, B. M.Messer, W. S.Drisdell, R. C.Cohen, and R. J.Saykally, Probing the local structure of liquid water by X-ray absorption spectroscopy, J. Phys. Chem. B110(40), 20038(2006)
CrossRef ADS Google scholar
[55]
W.Chen, X.Wu, and R.Car, X-ray absorption signatures of the molecular environment in water and ice, Phys. Rev. Lett. 105(1), 017802(2010)
CrossRef ADS Google scholar
[56]
D.Prendergastand G.Galli, X-ray absorption spectra of water from first principles calculations, Phys. Rev. Lett. 96(21), 215502(2006)
CrossRef ADS Google scholar
[57]
T.Fransson, I.Zhovtobriukh, S.Coriani, K. T.Wikfeldt, P.Norman, and L. G. M.Pettersson, Requirements of first-principles calculations of X-ray absorption spectra of liquid water, Phys. Chem. Chem. Phys. 18(1), 566(2016)
CrossRef ADS Google scholar
[58]
A.Nilsson, D.Nordlund, I.Waluyo, N.Huang, H.Ogasawara, S.Kaya, U.Bergmann, L. Å.Näslund, H.Öström, P.Wernet, K. J.Andersson, T.Schiros, and L. G. M.Pettersson, X-ray absorption spectroscopy and Xray Raman scattering of water and ice – An experimental view, J. Electron Spectrosc. Relat. Phenom. 177(2–3), 99(2010)
CrossRef ADS Google scholar
[59]
M.Leetmaa, M. P.Ljungberg, A.Lyubartsev, A.Nilsson, and L. G. M.Pettersson, Theoretical approximations to X-ray absorption spectroscopy of liquid water and ice, J. Electron Spectrosc. Relat. Phenom. 177(2–3), 135(2010)
CrossRef ADS Google scholar
[60]
J.Vinson, J. J.Kas, F. D.Vila, J. J.Rehr, and E. L.Shirley, Theoretical optical and X-ray spectra of liquid and solid H2O, Phys. Rev. B85(4), 045101(2012)
CrossRef ADS Google scholar
[61]
O.Fuchs, M.Zharnikov, L.Weinhardt, M.Blum, M.Weigand, Y.Zubavichus, M.Bär, F.Maier, J. D.Denlinger, C.Heske, M.Grunze, and E.Umbach, Isotope and temperature effects in liquid water probed by X-ray absorption and resonant X-ray emission spectroscopy, Phys. Rev. Lett.100(2), 027801(2008)
CrossRef ADS Google scholar
[62]
D.Nordlund, H.Ogasawara, K. J.Andersson, M.Tatarkhanov, M.Salmerón, L. G. M.Pettersson, and A.Nilsson, Sensitivity of X-ray absorption spectroscopy to hydrogen bond topology, Phys. Rev. B80(23), 233404(2009)
CrossRef ADS Google scholar
[63]
S.Kashtanov, A.Augustsson, Y.Luo, J. H.Guo, C.Sthe, J. E.Rubensson, H.Siegbahn, J.Nordgren, and H.Ågren, Local structures of liquid water studied by Xray emission spectroscopy, Phys. Rev. B69(2), 024201(2004)
CrossRef ADS Google scholar
[64]
J. A.Sellberg, T. A.McQueen, H.Laksmono, S.Schreck, M.Beye, et al., X-ray emission spectroscopy of bulk liquid water in “no-man’s land”, J. Chem. Phys. 142(4), 044505(2015)
CrossRef ADS Google scholar
[65]
M.Odelius, H.Ogasawara, D.Nordlund, O.Fuchs, L.Weinhardt, F.Maier, E.Umbach, C.Heske, Y.Zubavichus, M.Grunze, J. D.Denlinger, L. G. M.Pettersson, and A.Nilsson, Ultrafast core-hole-induced dynamics in water probed by X-ray emission spectroscopy, Phys. Rev. Lett. 94(22), 227401(2005)
CrossRef ADS Google scholar
[66]
J. H.Guo, Y.Luo, A.Augustsson, J. E.Rubensson, C.Såthe, H.Ågren, H.Siegbahn, and J.Nordgren, Xray emission spectroscopy of hydrogen bonding and electronic structure of liquid water, Phys. Rev. Lett. 89(13), 137402(2002)
CrossRef ADS Google scholar
[67]
M.Odelius, Molecular dynamics simulations of fine structure in oxygen K-edge X-ray emission spectra of liquid water and ice, Phys. Rev. B79(14), 144204(2009)
CrossRef ADS Google scholar
[68]
L.Weinhardt, O.Fuchs, M.Blum, M.Bär, M.Weigand, J. D.Denlinger, Y.Zubavichus, M.Zharnikov, M.Grunze, C.Heske, and E.Umbach, Resonant X-ray emission spectroscopy of liquid water: Novel instrumentation, high resolution, and the “map” approach, J. Electron Spectrosc. Relat. Phenom. 177(2–3), 206(2010)
CrossRef ADS Google scholar
[69]
T.Tokushima, Y.Harada, Y.Horikawa, O.Takahashi, Y.Senba, H.Ohashi, L. G. M.Pettersson, A.Nilsson, and S.Shin, High resolution X-ray emission spectroscopy of water and its assignment based on two structural motifs, J. Electron Spectrosc. Relat. Phenom. 177(2–3), 192(2010)
CrossRef ADS Google scholar
[70]
K. M.Lange, M.Soldatov, R.Golnak, M.Gotz, N.Engel, R.Könnecke, J. E.Rubensson, and E. F.Aziz, X-ray emission from pure and dilute H2O and D2O in a liquid microjet: Hydrogen bonds and nuclear dynamics, Phys. Rev. B85(15), 155104(2012)
CrossRef ADS Google scholar
[71]
Z.Sun, M.Chen, J.Wang, S.Biswajit, H.Shen, L.Xu, W.Kang, and X.Wu, X-ray absorption of liquid water studied by advanced ab initio methods, Phys. Rev. B (Submitted)
[72]
B.Brena, D.Nordlund, M.Odelius, H.Ogasawara, A.Nilsson, and L. G. M.Pettersson, Ultrafast molecular dissociation of water in ice, Phys. Rev. Lett. 93(14), 148302(2004)
CrossRef ADS Google scholar
[73]
M.Neeb, J. E.Rubensson, M.Biermann, and W.Eberhardt, Coherent excitation of vibrational wave functions observed in core hole decay spectra of O2, N2 and CO, J. Electron Spectrosc. Relat. Phenom. 67(2), 261(1994)
CrossRef ADS Google scholar
[74]
F.Gel’mukhanov, H.Ågren, M.Neeb, J. E.Rubensson, and A.Bringer, Integral properties of channel interference in resonant X-ray scattering, Phys. Lett. A211(2), 101(1996)
CrossRef ADS Google scholar
[75]
M.Odelius, Information content in O[1s] K-edge X-ray emission spectroscopy of liquid water, J. Phys. Chem. A113(29), 8176(2009)
CrossRef ADS Google scholar
[76]
N. A.Besley, Equation of motion coupled cluster theory calculations of the X-ray emission spectroscopy of water, Chem. Phys. Lett. 542, 42(2012)
CrossRef ADS Google scholar
[77]
L.Weinhardt, A.Benkert, F.Meyer, M.Blum, R. G.Wilks, W.Yang, M.Bär, F.Reinert, and C.Heske, Nuclear dynamics and spectator effects in resonant inelastic soft X-ray scattering of gas-phase water molecules, J. Chem. Phys. 136(14), 144311(2012)
CrossRef ADS Google scholar
[78]
W.Kohnand L. J.Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133(1965)
CrossRef ADS Google scholar
[79]
J. P.Perdew, K.Burke, and M.Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. 77, 3865(1996)
CrossRef ADS Google scholar
[80]
P.Giannozzi, S.Baroni, N.Bonini, M.Calandra, R.Car, et al., QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter21(39), 395502(2009)
CrossRef ADS Google scholar
[81]
N.Troullierand J. L.Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B43(3), 1993(1991)
CrossRef ADS Google scholar
[82]
D. R.Hamann, M.Schlüter, and C.Chiang, Normconserving pseudopotentials, Phys. Rev. Lett. 43(20), 1494(1979)
CrossRef ADS Google scholar
[83]
D. R.Hamann, Generalized norm-conserving pseudopotentials, Phys. Rev. B40(5), 2980(1989)
CrossRef ADS Google scholar
[84]
J. A.Morroneand R.Car, Nuclear quantum effects in water, Phys. Rev. Lett. 101(1), 017801(2008)
CrossRef ADS Google scholar
[85]
G. J.Martyna, M. L.Klein, and M.Tuckerman, Nose– Hoover chains: The canonical ensemble via continuous dynamics, J. Chem. Phys. 97(4), 2635(1992)
CrossRef ADS Google scholar
[86]
W. G.Hoover, Canonical dynamics: Equilibrium phasespace distributions, Phys. Rev. A31(3), 1695(1985)
CrossRef ADS Google scholar
[87]
S.Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys.81(1), 511(1984)
CrossRef ADS Google scholar
[88]
A.Luzarand D.Chandler, Hydrogen-bond kinetics in liquid water, Nature379(6560), 55(1996)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(3016 KB)

Accesses

Citations

Detail

Sections
Recommended

/