Dynamics of supercooled confined water measured by deep inelastic neutron scattering

Vincenzo De Michele , Giovanni Romanelli , Antonio Cupane

Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 138205

PDF (1407KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 138205 DOI: 10.1007/s11467-017-0699-1
RESEARCH ARTICLE

Dynamics of supercooled confined water measured by deep inelastic neutron scattering

Author information +
History +
PDF (1407KB)

Abstract

In this paper, we present the results of deep inelastic neutron scattering (DINS) measurements on supercooled water confined within the pores (average pore diameter ~20 Å) of a disordered hydrophilic silica matrix obtained through hydrolysis and polycondensation of the alkoxide precursor Tetra-Methyl- Ortho-Silicate via the sol-gel method. Experiments were performed at two temperatures (250 K and 210 K, i.e., before and after the putative liquid–liquid transition of supercooled confined water) on a “wet” sample with hydrationh~40% w/w, which is high enough to have water-filled pores but low enough to avoid water crystallization. A virtually “dry” sample ath ~7% was also investigated to measure the contribution of the silica matrix to the neutron scattering signal. As is well known, DINS measurements allow the determination of the mean kinetic energy and the momentum distribution of the hydrogen atoms in the system and therefore, allow researchers to probe the local structure of supercooled confined water. The main result obtained is that at 210 K the hydrogen mean kinetic energy is equal or even slightly higher than at 250 K. This is at odds with the predictions of a semiempirical harmonic model recently proposed to describe the temperature dependence of the kinetic energy of hydrogen in water. This is a new and very interesting result, which suggests that at 210 K, the water hydrogens experience a stiffer intermolecular potential than at 250 K. This is in agreement with the liquid–liquid transition hypothesis.

Keywords

confined water / liquid–liquid transition / hydrogen mean kinetic energy / silica xerogel

Cite this article

Download citation ▾
Vincenzo De Michele, Giovanni Romanelli, Antonio Cupane. Dynamics of supercooled confined water measured by deep inelastic neutron scattering. Front. Phys., 2018, 13(1): 138205 DOI:10.1007/s11467-017-0699-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. G.Debenedetti, Supercooled and glassy water, J. Phys.: Condens. Matter15(45), R1669 (2003)

[2]

A.Nilssonand L. G. M. Pettersson, The structural origin of anomalous properties of liquid water, Nat. Commun. 6, 8998(2015)

[3]

P. H.Poole, F.Sciortino, U.Essmann , and H. E.Stanley , Phase behaviour of metastable water, Nature360(6402), 324(1992)

[4]

L.Liu, S. H.Chen, A.Faraone, C. W. Yen, andC. Y.Mou , Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water, Phys. Rev. Lett.95(11), 117802(2005)

[5]

S. H.Chen, F.Mallamace,C. Y.Mou , M.Broccio, C.Corsaro, A.Faraone , and L.Liu, The violation of the Stokes–Einstein relation in supercooled water, Proc. Natl. Acad. Sci. USA103(35), 12974(2006)

[6]

G.Schirò, M. Fomina, and A.Cupane , Communication: Protein dynamical transition vs. liquid–liquid phase transition in protein hydration water, J. Chem. Phys. 139(12), 121102(2013)

[7]

J. C.Palmer, F.Martelli, Y.Liu , R.Car, A. Z.Panagiotopoulos, and P. G.Debenedetti , Metastable liquid– liquid transition in a molecular model of water, Nature510(7505), 385(2014)

[8]

J. A.Sellberg, C.Huang, T. A.McQueen , N. D.Loh, H.Laksmono, D.Schlesinger , R. G.Sierra, D.Nordlund, C. Y.Hampton , D.Starodub, D. P.DePonte, M.Beye , C.Chen, A. V.Martin, A.Barty , K. T.Wikfeldt, T. M.Weiss, C.Caronna, J. Feldkamp, L. B.Skinner , M. M.Seibert, M.Messerschmidt,G. J.Williams , S.Boutet, L. G. M. Pettersson, M. J.Bogan , and A.Nilsson, Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature, Nature510(7505), 381(2014)

[9]

Z.Wang, K.Ito, J. B.Leão , L.Harriger, Y.Liu, and S. H.Chen , Liquid–liquid phase transition and its phase diagram in deeply-cooled heavy water confined in a nanoporous silica matrix, J. Phys. Chem. Lett.6(11), 2009(2015)

[10]

S. H.Chen, L.Liu, E.Fratini, P. Baglioni, A.Faraone , and E.Mamontov, Observation of fragile-to-strong dynamic crossover in protein hydration water, Proc. Natl. Acad. Sci. USA103(24), 9012(2006)

[11]

M.Fomina, G.Schirò, and A.Cupane , Hydration dependence of myoglobin dynamics studied with elastic neutron scattering, differential scanning calorimetry and broadband dielectric spectroscopy, Biophys. Chem. 185, 25(2014)

[12]

G.Schiròand A. Cupane, Anharmonic activations in proteins and peptide model systems and their connection with supercooled water thermodynamics, Il Nuovo Cimento C39(3), 305(2016)

[13]

D. T.Limmerand D.Chandler, The putative liquid– liquid transition is a liquid–solid transition in atomistic models of water,J. Chem. Phys. 135(13), 134503(2011)

[14]

A. K.Soper, Density profile of water confined in cylindrical pores in MCM-41 silica, J. Phys.: Condens. Matter24(6), 064107(2012)

[15]

C.Andreani, D.Colognesi, J.Mayers , G. F.Reiter, and R.Senesi, Measurement of momentum distribution of light atoms and molecules in condensed matter systems using inelastic neutron scattering, Adv. Phys. 54(5), 377(2005)

[16]

H. E.Stanley, P.Kumar, L.Xu, Z. Yan, M. G.Mazza , S. V.Buldyrev, S. H.Chen, and F.Mallamace , The puzzling unsolved mysteries of liquid water: Some recent progress, Physica A386(2), 729(2007)

[17]

M.Cammarata, M.Levantino, A.Cupane , A.Longo, A.Martorana, and F.Bruni , Structure and dynamics of water confined in silica hydrogels: X-ray scattering and dielectric spectroscopy studies, Eur. Phys. J. E12(Suppl. 1), S63(2003)

[18]

M.D’Amico, G. Schirò, A.Cupane, L.D’Alfonso , M.Leone, V.Militello, and V.Vetri , High fluorescence of thioflavin T confined in mesoporous silica xerogels, Langmuir29(32), 10238(2013)

[19]

J.Mayers, Calculation of background effects on the VESUVIO eV neutron spectrometer, Meas. Sci. Technol. 22(1), 015903(2011)

[20]

J.Mayers, A. L.Fielding, and R.Senesi , Multiple scattering in deep inelastic neutron scattering: Monte Carlo simulations and experiments at the ISIS eVS inverse geometry spectrometer, Nucl. Instrum. Methods Phys. Res. A481(1–3), 454(2002)

[21]

J.Mayers, User Guide to VESUVIO Data Analysis: Programs for Powders and Liquids, ISIS Facility, 2010

[22]

G. B.West, Electron scattering from atoms, nuclei and nucleons, Phys. Rep. 18(5), 263(1975)

[23]

G. I.Watson, Neutron Compton scattering, J. Phys.: Condens. Matter8(33), 5955(1996)

[24]

M.Krzystyniak, A. G.Seel, S. E.Richards , M. J.Gutmann, and F.Fernandez-Alonso, Mass-selective neutron spectroscopy beyond the proton, J. Phys. Conf. Ser.571, 012002(2014)

[25]

C.Pantalei, R.Senesi, C.Andreani , P.Sozzani, A.Comotti, S.Bracco , M.Beretta, P. E.Sokol, and G.Reiter , Interaction of single water molecules with silanols in mesoporous silica, Phys. Chem. Chem. Phys. 13(13), 6022(2011)

[26]

V.Garbuio, C.Andreani, S.Imberti , A.Pietropaolo, G. F.Reiter, R.Senesi , and M. A.Ricci, Proton quantum coherence observed in water confined in silica nanopores, J. Chem. Phys. 127(15), 154501(2007)

[27]

Y.Finkelsteinand R. Moreh, Temperature dependence of the proton kinetic energy in water between 5 and 673 K, Chem. Phys. 431–432, 58(2014)

[28]

G.Romanelli, F.Fernandez-Alonso, and C.Andreani , The harmonic picture of nuclear mean kinetic energies in heavy water, J. Phys. Conf. Ser. 571, 012003(2014)

[29]

F.Mallamace, M.Broccio, C.Corsaro , A.Faraone, D.Majolino, V.Venuti , L.Liu, C. Y.Mou, and S. H.Chen , Evidence of the existence of the low-density liquid phase in supercooled, confined water, Proc. Natl. Acad. Sci. USA104(2), 424(2007)

[30]

F.Mallamace, S.H.Chen, M.Broccio, C. Corsaro, V.Crupi , D.Majolino, V.Venuti, P.Baglioni , E.Fratini, C.Vannucci, and H. E.Stanley , Role of the solvent in the dynamical transitions of proteins: The case of the lysozyme-water system., J. Chem. Phys. 127(4), 045104(2007)

[31]

A.Cupane, M.Fomina, and G.Schirò , The boson peak of deeply cooled confined water reveals the existence of a low-temperature liquid–liquid crossover, J. Chem. Phys. 141, 18C510(2014)

[32]

Z.Wang, K. H.Liu, P.Le, M. Li, W. S.Chiang , J. B.Leão, J. R. D. Copley, M.Tyagi ,A.Podlesnyak, A. I.Kolesnikov, C. Y.Mou , and S. H.Chen, Boson peak in deeply cooled confined water: A possible way to explore the existence of the liquid-to-liquid transition in water, Phys. Rev. Lett. 112(23), 237802(2014)

[33]

Z.Wang, A. I.Kolesnikov, K.Ito , A.Podlesnyak, and S. H. Chen, Pressure effect on the boson peak in deeply cooled confined water: Evidence of a liquid–liquid transition, Phys. Rev. Lett.115(23), 235701(2015)

[34]

A.Cupane, V.De Michele, and G.Romanelli , ISIS experiment1710456, 2017

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1407KB)

903

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/