Dynamics of supercooled confined water measured by deep inelastic neutron scattering

Vincenzo De Michele, Giovanni Romanelli, Antonio Cupane

Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 138205.

PDF(1407 KB)
PDF(1407 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 138205. DOI: 10.1007/s11467-017-0699-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Dynamics of supercooled confined water measured by deep inelastic neutron scattering

Author information +
History +

Abstract

In this paper, we present the results of deep inelastic neutron scattering (DINS) measurements on supercooled water confined within the pores (average pore diameter ~20 Å) of a disordered hydrophilic silica matrix obtained through hydrolysis and polycondensation of the alkoxide precursor Tetra-Methyl- Ortho-Silicate via the sol-gel method. Experiments were performed at two temperatures (250 K and 210 K, i.e., before and after the putative liquid–liquid transition of supercooled confined water) on a “wet” sample with hydrationh~40% w/w, which is high enough to have water-filled pores but low enough to avoid water crystallization. A virtually “dry” sample ath ~7% was also investigated to measure the contribution of the silica matrix to the neutron scattering signal. As is well known, DINS measurements allow the determination of the mean kinetic energy and the momentum distribution of the hydrogen atoms in the system and therefore, allow researchers to probe the local structure of supercooled confined water. The main result obtained is that at 210 K the hydrogen mean kinetic energy is equal or even slightly higher than at 250 K. This is at odds with the predictions of a semiempirical harmonic model recently proposed to describe the temperature dependence of the kinetic energy of hydrogen in water. This is a new and very interesting result, which suggests that at 210 K, the water hydrogens experience a stiffer intermolecular potential than at 250 K. This is in agreement with the liquid–liquid transition hypothesis.

Keywords

confined water / liquid–liquid transition / hydrogen mean kinetic energy / silica xerogel

Cite this article

Download citation ▾
Vincenzo De Michele, Giovanni Romanelli, Antonio Cupane. Dynamics of supercooled confined water measured by deep inelastic neutron scattering. Front. Phys., 2018, 13(1): 138205 https://doi.org/10.1007/s11467-017-0699-1

References

[1]
P. G.Debenedetti, Supercooled and glassy water, J. Phys.: Condens. Matter15(45), R1669 (2003)
CrossRef ADS Google scholar
[2]
A.Nilssonand L. G. M. Pettersson, The structural origin of anomalous properties of liquid water, Nat. Commun. 6, 8998(2015)
CrossRef ADS Google scholar
[3]
P. H.Poole, F.Sciortino, U.Essmann , and H. E.Stanley , Phase behaviour of metastable water, Nature360(6402), 324(1992)
CrossRef ADS Google scholar
[4]
L.Liu, S. H.Chen, A.Faraone, C. W. Yen, andC. Y.Mou , Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water, Phys. Rev. Lett.95(11), 117802(2005)
CrossRef ADS Google scholar
[5]
S. H.Chen, F.Mallamace,C. Y.Mou , M.Broccio, C.Corsaro, A.Faraone , and L.Liu, The violation of the Stokes–Einstein relation in supercooled water, Proc. Natl. Acad. Sci. USA103(35), 12974(2006)
CrossRef ADS Google scholar
[6]
G.Schirò, M. Fomina, and A.Cupane , Communication: Protein dynamical transition vs. liquid–liquid phase transition in protein hydration water, J. Chem. Phys. 139(12), 121102(2013)
CrossRef ADS Google scholar
[7]
J. C.Palmer, F.Martelli, Y.Liu , R.Car, A. Z.Panagiotopoulos, and P. G.Debenedetti , Metastable liquid– liquid transition in a molecular model of water, Nature510(7505), 385(2014)
CrossRef ADS Google scholar
[8]
J. A.Sellberg, C.Huang, T. A.McQueen , N. D.Loh, H.Laksmono, D.Schlesinger , R. G.Sierra, D.Nordlund, C. Y.Hampton , D.Starodub, D. P.DePonte, M.Beye , C.Chen, A. V.Martin, A.Barty , K. T.Wikfeldt, T. M.Weiss, C.Caronna, J. Feldkamp, L. B.Skinner , M. M.Seibert, M.Messerschmidt,G. J.Williams , S.Boutet, L. G. M. Pettersson, M. J.Bogan , and A.Nilsson, Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature, Nature510(7505), 381(2014)
CrossRef ADS Google scholar
[9]
Z.Wang, K.Ito, J. B.Leão , L.Harriger, Y.Liu, and S. H.Chen , Liquid–liquid phase transition and its phase diagram in deeply-cooled heavy water confined in a nanoporous silica matrix, J. Phys. Chem. Lett.6(11), 2009(2015)
CrossRef ADS Google scholar
[10]
S. H.Chen, L.Liu, E.Fratini, P. Baglioni, A.Faraone , and E.Mamontov, Observation of fragile-to-strong dynamic crossover in protein hydration water, Proc. Natl. Acad. Sci. USA103(24), 9012(2006)
CrossRef ADS Google scholar
[11]
M.Fomina, G.Schirò, and A.Cupane , Hydration dependence of myoglobin dynamics studied with elastic neutron scattering, differential scanning calorimetry and broadband dielectric spectroscopy, Biophys. Chem. 185, 25(2014)
CrossRef ADS Google scholar
[12]
G.Schiròand A. Cupane, Anharmonic activations in proteins and peptide model systems and their connection with supercooled water thermodynamics, Il Nuovo Cimento C39(3), 305(2016)
[13]
D. T.Limmerand D.Chandler, The putative liquid– liquid transition is a liquid–solid transition in atomistic models of water,J. Chem. Phys. 135(13), 134503(2011)
CrossRef ADS Google scholar
[14]
A. K.Soper, Density profile of water confined in cylindrical pores in MCM-41 silica, J. Phys.: Condens. Matter24(6), 064107(2012)
CrossRef ADS Google scholar
[15]
C.Andreani, D.Colognesi, J.Mayers , G. F.Reiter, and R.Senesi, Measurement of momentum distribution of light atoms and molecules in condensed matter systems using inelastic neutron scattering, Adv. Phys. 54(5), 377(2005)
CrossRef ADS Google scholar
[16]
H. E.Stanley, P.Kumar, L.Xu, Z. Yan, M. G.Mazza , S. V.Buldyrev, S. H.Chen, and F.Mallamace , The puzzling unsolved mysteries of liquid water: Some recent progress, Physica A386(2), 729(2007)
CrossRef ADS Google scholar
[17]
M.Cammarata, M.Levantino, A.Cupane , A.Longo, A.Martorana, and F.Bruni , Structure and dynamics of water confined in silica hydrogels: X-ray scattering and dielectric spectroscopy studies, Eur. Phys. J. E12(Suppl. 1), S63(2003)
CrossRef ADS Google scholar
[18]
M.D’Amico, G. Schirò, A.Cupane, L.D’Alfonso , M.Leone, V.Militello, and V.Vetri , High fluorescence of thioflavin T confined in mesoporous silica xerogels, Langmuir29(32), 10238(2013)
CrossRef ADS Google scholar
[19]
J.Mayers, Calculation of background effects on the VESUVIO eV neutron spectrometer, Meas. Sci. Technol. 22(1), 015903(2011)
CrossRef ADS Google scholar
[20]
J.Mayers, A. L.Fielding, and R.Senesi , Multiple scattering in deep inelastic neutron scattering: Monte Carlo simulations and experiments at the ISIS eVS inverse geometry spectrometer, Nucl. Instrum. Methods Phys. Res. A481(1–3), 454(2002)
CrossRef ADS Google scholar
[21]
J.Mayers, User Guide to VESUVIO Data Analysis: Programs for Powders and Liquids, ISIS Facility, 2010
[22]
G. B.West, Electron scattering from atoms, nuclei and nucleons, Phys. Rep. 18(5), 263(1975)
CrossRef ADS Google scholar
[23]
G. I.Watson, Neutron Compton scattering, J. Phys.: Condens. Matter8(33), 5955(1996)
CrossRef ADS Google scholar
[24]
M.Krzystyniak, A. G.Seel, S. E.Richards , M. J.Gutmann, and F.Fernandez-Alonso, Mass-selective neutron spectroscopy beyond the proton, J. Phys. Conf. Ser.571, 012002(2014)
CrossRef ADS Google scholar
[25]
C.Pantalei, R.Senesi, C.Andreani , P.Sozzani, A.Comotti, S.Bracco , M.Beretta, P. E.Sokol, and G.Reiter , Interaction of single water molecules with silanols in mesoporous silica, Phys. Chem. Chem. Phys. 13(13), 6022(2011)
CrossRef ADS Google scholar
[26]
V.Garbuio, C.Andreani, S.Imberti , A.Pietropaolo, G. F.Reiter, R.Senesi , and M. A.Ricci, Proton quantum coherence observed in water confined in silica nanopores, J. Chem. Phys. 127(15), 154501(2007)
CrossRef ADS Google scholar
[27]
Y.Finkelsteinand R. Moreh, Temperature dependence of the proton kinetic energy in water between 5 and 673 K, Chem. Phys. 431–432, 58(2014)
CrossRef ADS Google scholar
[28]
G.Romanelli, F.Fernandez-Alonso, and C.Andreani , The harmonic picture of nuclear mean kinetic energies in heavy water, J. Phys. Conf. Ser. 571, 012003(2014)
CrossRef ADS Google scholar
[29]
F.Mallamace, M.Broccio, C.Corsaro , A.Faraone, D.Majolino, V.Venuti , L.Liu, C. Y.Mou, and S. H.Chen , Evidence of the existence of the low-density liquid phase in supercooled, confined water, Proc. Natl. Acad. Sci. USA104(2), 424(2007)
CrossRef ADS Google scholar
[30]
F.Mallamace, S.H.Chen, M.Broccio, C. Corsaro, V.Crupi , D.Majolino, V.Venuti, P.Baglioni , E.Fratini, C.Vannucci, and H. E.Stanley , Role of the solvent in the dynamical transitions of proteins: The case of the lysozyme-water system., J. Chem. Phys. 127(4), 045104(2007)
CrossRef ADS Google scholar
[31]
A.Cupane, M.Fomina, and G.Schirò , The boson peak of deeply cooled confined water reveals the existence of a low-temperature liquid–liquid crossover, J. Chem. Phys. 141, 18C510(2014)
[32]
Z.Wang, K. H.Liu, P.Le, M. Li, W. S.Chiang , J. B.Leão, J. R. D. Copley, M.Tyagi ,A.Podlesnyak, A. I.Kolesnikov, C. Y.Mou , and S. H.Chen, Boson peak in deeply cooled confined water: A possible way to explore the existence of the liquid-to-liquid transition in water, Phys. Rev. Lett. 112(23), 237802(2014)
CrossRef ADS Google scholar
[33]
Z.Wang, A. I.Kolesnikov, K.Ito , A.Podlesnyak, and S. H. Chen, Pressure effect on the boson peak in deeply cooled confined water: Evidence of a liquid–liquid transition, Phys. Rev. Lett.115(23), 235701(2015)
CrossRef ADS Google scholar
[34]
A.Cupane, V.De Michele, and G.Romanelli , ISIS experiment1710456, 2017

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1407 KB)

Accesses

Citations

Detail

Sections
Recommended

/