Two-dimensional matter-wave solitons and vortices in competing cubic-quintic nonlinear lattices

Xuzhen Gao, Jianhua Zeng

Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 130501.

PDF(839 KB)
PDF(839 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 130501. DOI: 10.1007/s11467-017-0697-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Two-dimensional matter-wave solitons and vortices in competing cubic-quintic nonlinear lattices

Author information +
History +

Abstract

The nonlinear lattice — a new and nonlinear class of periodic potentials — was recently introduced to generate various nonlinear localized modes. Several attempts failed to stabilize two-dimensional (2D) solitons against their intrinsic critical collapse in Kerr media. Here, we provide a possibility for supporting 2D matter-wave solitons and vortices in an extended setting — the cubic and quintic model — by introducing another nonlinear lattice whose period is controllable and can be different from its cubic counterpart, to its quintic nonlinearity, therefore making a fully “nonlinear quasi-crystal”.

A variational approximation based on Gaussian ansatz is developed for the fundamental solitons and in particular, their stability exactly follows the inverted Vakhitov–Kolokolov stability criterion, whereas the vortex solitons are only studied by means of numerical methods. Stability regions for two types of localized mode — the fundamental and vortex solitons — are provided. A noteworthy feature of the localized solutions is that the vortex solitons are stable only when the period of the quintic nonlinear lattice is the same as the cubic one or when the quintic nonlinearity is constant, while the stable fundamental solitons can be created under looser conditions. Our physical setting (cubic-quintic model) is in the framework of the Gross–Pitaevskii equation or nonlinear Schrödinger equation, the predicted localized modes thus may be implemented in Bose–Einstein condensates and nonlinear optical media with tunable cubic and quintic nonlinearities.

Keywords

soliton / vortex / Bose–Einstein condensate / periodic potential

Cite this article

Download citation ▾
Xuzhen Gao, Jianhua Zeng. Two-dimensional matter-wave solitons and vortices in competing cubic-quintic nonlinear lattices. Front. Phys., 2018, 13(1): 130501 https://doi.org/10.1007/s11467-017-0697-3

References

[1]
L.Pitaevskii and S.Stringari, Bose–Einstein Condensation, Oxford: Oxford University Press, 2003
[2]
C. J.Pethickand H.Smith, Bose–Einstein Condensate in Dilute Gas, Cambridge: Cambridge University Press, 2008
CrossRef ADS Google scholar
[3]
A.Griffin, T.Nikuni, and E.Zaremba, Bose-condensed Gases at Finite Temperature, Cambridge: Cambridge University Press, 2009
CrossRef ADS Google scholar
[4]
P. G.Kevrekidis, D. J.Frantzeskakis, and R.Carretero-González, Emergent Nonlinear Phenomena in Bose– Einstein Condensates, Berlin: Springer, 2008
CrossRef ADS Google scholar
[5]
H. T. C.Stoof, K. B.Gubbels, and D. B. M.Dickerscheid, Ultracold Quantum Fields, Dordrecht: Springer, 2009
[6]
M.Weidemüllerand C.Zimmermann(Eds.), Cold Atoms and Molecules, Weinheim: Wiley-VCH, 2009
[7]
R.Krems, W. C.Stwalley, andB.Friedrich, Cold Molecules: Theory, Experiment, Applications, Boca Raton: CRC Press, 2009
[8]
D. S.Jin, J. R.Ensher, M. R.Matthews, C. E.Wieman, and E. A.Cornell, Collective excitations of a Bose– Einstein condensate in a dilute gas, Phys. Rev. Lett. 77(3), 420 (1996)
CrossRef ADS Google scholar
[9]
M. O.Mewes, M. R.Andrews, N. J.van Druten, D. M.Kurn, D. S.Durfee, and W.Ketterle, Bose–Einstein condensation in a tightly confining dc magnetic trap, Phys. Rev. Lett. 77(3), 416(1996)
CrossRef ADS Google scholar
[10]
M. O.Mewes, M. R.Andrews, N. J.van Druten, D. M.Kurn, D. S.Durfee, C. G.Townsend, and W.Ketterle, Collective excitations of a Bose–Einstein condensate in a magnetic trap, Phys. Rev. Lett. 77(6), 988(1996)
CrossRef ADS Google scholar
[11]
S.Burger, K.Bongs, S.Dettmer, W.Ertmer, K.Sengstock, A.Sanpera, G. V.Shlyapnikov, and M.Lewenstein, Dark solitons in Bose–Einstein condensates, Phys. Rev. Lett. 83(25), 5198(1999)
CrossRef ADS Google scholar
[12]
B. P.Anderson, P. C.Haljan, C. A.Regal, D. L.Feder, L. A.Collins, C. W.Clark, and E. A.Cornell, Watching dark solitons decay into vortex rings in a Bose–Einstein condensate, Phys. Rev. Lett.86(14), 2926(2001)
CrossRef ADS Google scholar
[13]
A.Muryshev, G. V.Shlyapnikov, W.Ertmer, K.Sengstock, and M.Lewenstein, Dynamics of dark solitons in elongated Bose–Einstein condensates, Phys. Rev. Lett. 89(11), 110401(2002)
CrossRef ADS Google scholar
[14]
J.Denschlag, J. E.Simsarian, D. L.Feder, C. W.Clark, L. A.Collins, J.Cubizolles, L.Deng, E. W.Hagley, K.Helmerson, W. P.Reinhardt, S. L.Rolston, B. I.Schneider, and W. D.Phillips, Generating solitons by phase engineering of a Bose–Einstein condensate, Science287(5450), 97(2000)
CrossRef ADS Google scholar
[15]
Z.Dutton, M.Budde, C.Slowe, andL. V.Hau, Observation of quantum shock waves created with ultracompressed slow light pulses in a Bose–Einstein condensate, Science293(5530), 663(2001)
CrossRef ADS Google scholar
[16]
D. J.Frantzeskakis, Dark solitons in atomic Bose– Einstein condensates: From theory to experiments, J. Phys. A Math. Theor. 43(21), 213001(2010)
CrossRef ADS Google scholar
[17]
U.Al Khawaja, H. T. C.Stoof, R. G.Hulet, K. E.Strecker, and G. B.Partridge, Bright soliton trains of trapped Bose–Einstein condensates, Phys. Rev. Lett. 89(20), 200404(2002)
CrossRef ADS Google scholar
[18]
S. L.Cornish, S. T.Thompson, and C. E.Wieman, Formation of bright matter-wave solitons during the collapse of attractive Bose–Einstein condensates, Phys. Rev. Lett. 96(17), 170401(2006)
CrossRef ADS Google scholar
[19]
L.Khaykovich, F.Schreck, G.Ferrari, T.Bourdel, J.Cubizolles, L. D.Carr, Y.Castin, and C.Salomon, Formation of a matter-wave bright soliton, Science296(5571), 1290(2002)
CrossRef ADS Google scholar
[20]
K. E.Stecker, G. B.Partridge,A. G.Truscott, and R. G.Hulet, Stability of dark solitons in three dimensional dipolar Bose–Einstein condensates, Nature89, 110401(2002)
[21]
B.Eiermann, Th.Anker, M.Albiez, M.Taglieber, P.Treutlein, K. P.Marzlin, and M. K.Oberthaler, Bright Bose–Einstein gap solitons of atoms with repulsive interaction, Phys. Rev. Lett. 92(23), 230401(2004)
CrossRef ADS Google scholar
[22]
M. R.Matthews, B. P.Anderson, P. C.Haljan, D. S.Hall, C. E.Wieman, and E. A.Cornell, Vortices in a Bose–Einstein condensate, Phys. Rev. Lett. 83(13), 2498(1999)
CrossRef ADS Google scholar
[23]
K. W.Madison, F.Chevy, W.Wohlleben, and J.Dalibard, Vortex formation in a stirred Bose–Einstein condensate, Phys. Rev. Lett. 84, 86809(1999)
[24]
S.Inouye, S.Gupta, T.Rosenband, A. P.Chikkatur, A.Görlitz, T. L.Gustavson, A. E.Leanhardt, D. E.Pritchard, and W.Ketterle, Observation of vortex phase singularities in Bose–Einstein condensates, Phys. Rev. Lett. 87(8), 080402(2001)
CrossRef ADS Google scholar
[25]
V.Schweikhard, I.Coddington, P.Engels, S.Tung, and E. A.Cornell, Vortex-lattice dynamics in rotating spinor Bose–Einstein condensates, Phys. Rev. Lett. 93(21), 210403(2004)
CrossRef ADS Google scholar
[26]
J. R.Abo-Shaeer,C.Raman, J. M.Vogels, and W.Ketterle, Observation of vortex lattices in Bose–Einstein condensates, Science292(5516), 476(2001)
CrossRef ADS Google scholar
[27]
Y. S.Kivsharand G. P.Agrawal, Optical Solitons: From Fibers to Photonic Crystals, San Diego: Academic, 2003
[28]
L.Bergé, Wave collapse in physics: Principles and applications to light and plasma waves, Phys. Rep. 303(5–6), 259(1998)
CrossRef ADS Google scholar
[29]
Y. S.Kivsharand D. E.Pelinovsky, Self-focusing and transverse instabilities of solitary waves, Phys. Rep. 331(4), 117(2000)
CrossRef ADS Google scholar
[30]
B. A.Malomed, D.Mihalache,F.Wise, and L.Torner, Spatiotemporal optical solitons, J. Optics B7(5), R53(2005)
CrossRef ADS Google scholar
[31]
B. A.Malomed,L.Torner, F.Wise, and D.Mihalache, On multidimensional solitons and their legacy in contemporary atomic, molecular and optical physics, J. Optics B: At. Mol. Opt. Phys. 49, 170502(2016)
CrossRef ADS Google scholar
[32]
B. A.Malomed, Multidimensional solitons: Wellestablished results and novel findings, Eur. Phys. J. Spec. Top. 225(13–14), 2507(2016)
CrossRef ADS Google scholar
[33]
V. E.Zakharovand E. A.Kuznetsov, Solitons and collapses: Two evolution scenarios of nonlinear wave systems, Phys. Uspekhi55(6), 535(2012)
CrossRef ADS Google scholar
[34]
D.Mihalache, Linear and nonlinear light bullets: Recent theoretical and experimental studies, Rom. J. Phys. 57, 352(2012)
[35]
D.Mihalache, Multidimensional localized structures in optics and Bose–Einstein condensates: A selection of recent studies, Rom. J. Phys. 59, 295(2014)
[36]
C.Sulemand P.Sulem, The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse, Berlin: Springer, 2000
[37]
G.Fibich, The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse, Dordrecht: Springer, 2015
CrossRef ADS Google scholar
[38]
R. Y.Chiao, E.Garmire, and C. H.Townes, Selftrapping of optical beams, Phys. Rev. Lett. 13(15), 479(1964)
CrossRef ADS Google scholar
[39]
D.Mihalache, D.Mazilu, B. A.Malomed, andF.Lederer, Vortex stability in nearly-two-dimensional Bose– Einstein condensates with attraction, Phys. Rev. A73(4), 043615(2006)
CrossRef ADS Google scholar
[40]
B. A.Malomed, F.Lederer, D.Mazilu, and D.Mihalache, On stability of vortices in three-dimensional self-attractive Bose–Einstein condensates, Phys. Lett. A361(4–5), 336(2007)
CrossRef ADS Google scholar
[41]
D. E.Pelinovsky, Localization in Periodic Potential: From Schrödinger Operators to the Gross–Pitaevskii Equation, Cambridge: Cambridge University Press, 2011
CrossRef ADS Google scholar
[42]
V. A.Brazhnyiand V. V.Konotop, Theory of nonlinear matter waves in optical lattices, Mod. Phys. Lett. B18(14), 627(2004)
CrossRef ADS Google scholar
[43]
O.Morschand M.Oberthaler, Dynamics of Bose– Einstein condensates in optical lattices, Rev. Mod. Phys. 78(1), 179(2006)
CrossRef ADS Google scholar
[44]
Y. V.Kartashov, B. A.Malomed, and L.Torner, Solitons in nonlinear lattices, Rev. Mod. Phys. 83(1), 247(2011)
CrossRef ADS Google scholar
[45]
Y. V.Kartashov, V. A.Vysloukh, and L.Torner, Soliton shape and mobility control in optical lattices, Progress in Optics52, 63(2009) (edited by E. Wolf, Amsterdam: North Holland)
[46]
B. B.Baizakov, B. A.Malomed, andM.Salerno, Multidimensional solitons in periodic potentials, Europhys. Lett. 63(5), 642(2003)
CrossRef ADS Google scholar
[47]
B. B.Baizakov, B. A.Malomed, and M.Salerno, Multidimensional solitons in a low-dimensional periodic potential, Phys. Rev. A70(5), 053613(2004)
CrossRef ADS Google scholar
[48]
J.Yangand Z. H.Musslimani, Fundamental and vortex solitons in a two-dimensional optical lattice, Opt. Lett. 28(21), 2094(2003)
CrossRef ADS Google scholar
[49]
H.Sakaguchiand B. A.Malomed, Two-dimensional loosely and tightly bound solitons in optical lattices and inverted traps, J. Phys. B37(11), 2225(2004)
CrossRef ADS Google scholar
[50]
J. D.Joannopoulos, S. G.Johnson, J. N.Winn, and R. D.Meade, Photonic Crystals: Molding the Flow of Light, Princeton: Princeton University Press, 2008
[51]
I. L.Garanovich, S.Longhi, A. A.Sukhorukov, and Y. S.Kivshar, Light propagation and localization in modulated photonic lattices and waveguides, Phys. Rep. 518(1–2), 1 (2012)
CrossRef ADS Google scholar
[52]
Z.Chen, M.Segev, and D. N.Christodoulides, Optical spatial solitons: Historical overview and recent advances, Rep. Prog. Phys. 75(8), 086401(2012)
CrossRef ADS Google scholar
[53]
D. N.Neshev, T. J.Alexander, E. A.Ostrovskaya, Y. S.Kivshar, H.Martin, I.Makasyuk, and Z.Chen, Observation of discrete vortex solitons in optically induced photonic lattices, Phys. Rev. Lett. 92(12), 123903(2004)
CrossRef ADS Google scholar
[54]
J. W.Fleischer, G.Bartal, O.Cohen, O.Manela, M.Segev, J.Hudock, and D. N.Christodoulides,Observation of vortex-ring discrete solitons in 2D photonic lattices, Phys. Rev. Lett. 92(12), 123904(2004)
CrossRef ADS Google scholar
[55]
E. A.Cerda-Méndez, D.Sarkar, D. N.Krizhanovskii, S. S.Gavrilov, K.Biermann, M. S.Skolnick, and P. V.Santos, Exciton–polariton gap solitons in twodimensional lattices, Phys. Rev. Lett. 111(14), 146401(2013)
CrossRef ADS Google scholar
[56]
H.Sakaguchiand B. A.Malomed, Matter-wave solitons in nonlinear optical lattices, Phys. Rev. E72(4), 046610(2005)
CrossRef ADS Google scholar
[57]
Y. V.Kartashov, B. A.Malomed, V. A.Vysloukh, and L.Torner, Vector solitons in nonlinear lattices, Opt. Lett. 34(23), 3625(2009)
CrossRef ADS Google scholar
[58]
H.Sakaguchiand B. A.Malomed, Solitons in combined linear and nonlinear lattice potentials, Phys. Rev. A81(1), 013624(2010)
CrossRef ADS Google scholar
[59]
J.Zengand B. A.Malomed, Two-dimensional solitons and vortices in media with incommensurate linear and nonlinear lattice potentials, Phys. Scr.T149, 014035(2012)
[60]
H.Sakaguchiand B. A.Malomed, Two-dimensional solitons in the Gross–Pitaevskii equation with spatially modulated nonlinearity, Phys. Rev. E73(2), 026601(2006)
CrossRef ADS Google scholar
[61]
Y. V.Kartashov,B. A.Malomed, V. A.Vysloukh, and L.Torner, Two-dimensional solitons in nonlinear lattices, Opt. Lett. 34(6), 770(2009)
CrossRef ADS Google scholar
[62]
Y.Sivan, G.Fibich, B.Ilan, and M. I.Weinstein, Qualitative and quantitative analysis of stability and instability dynamics of positive lattice solitons, Phys. Rev. E78(4), 046602(2008)
CrossRef ADS Google scholar
[63]
N. V.Hung, P.Ziń, M.Trippenbach, and B. A.Malomed, Two dimensional solitons in media with stripeshaped nonlinearity modulation, Phys. Rev. E82(4), 046602(2010)
CrossRef ADS Google scholar
[64]
T.Mayteevarunyoo, B. A.Malomed, and A.Reoksabutr, Spontaneous symmetry breaking of photonic and matter waves in two-dimensional pseudopotentials, J. Mod. Opt. 58(21), 1977(2011)
CrossRef ADS Google scholar
[65]
Y. V.Kartashov, V. A.Vysloukh, A.Szameit, F.Dreisow, M.Heinrich, S.Nolte, A.Tunnermann, T.Pertsch, and L.Torner, Surface solitons at interfaces of arrays with spatially modulated nonlinearity, Opt. Lett. 33(10), 1120(2008)
CrossRef ADS Google scholar
[66]
V.Skarka, V. I.Berezhiani, and R.Miklaszewski, Spatiotemporal soliton propagation in saturating nonlinear optical media, Phys. Rev. E56(1), 1080(1997)
CrossRef ADS Google scholar
[67]
M.Quiroga-Teixeiroand H.Michinel, Stable azimuthal stationary state in quintic nonlinear optical media, J. Opt. Soc. Am. B14(8), 2004(1997)
CrossRef ADS Google scholar
[68]
R.Carretero-González, J. D.Talley, C.Chong, and B. A.Malomed, Multistable solitons in the cubic-quintic discrete nonlinear Schrödinger equation, Physica D216(1), 77(2006)
CrossRef ADS Google scholar
[69]
C.Chong, R.Carretero-González, B. A.Malomed, and P. G.Kevrekidis, Multistable solitons in higherdimensional cubic-quintic nonlinear Schrödinger lattices, Physica D238(2), 126(2009)
CrossRef ADS Google scholar
[70]
N.Drorand B. A.Malomed, Symmetric and asymmetric solitons and vortices in linearly coupled twodimensional waveguides with the cubic-quintic nonlinearity, Physica D240(6), 526(2011)
CrossRef ADS Google scholar
[71]
D.Mihalache, D.Mazilu, F.Lederer, H.Leblond, and B. A.Malomed, Stability of dissipative optical solitons in the three dimensional cubic-quintic Ginzburg–Landau equation, Phys. Rev. A75(3), 033811(2007)
CrossRef ADS Google scholar
[72]
N.Viet Hung, M.Trippenbach, E.Infeld, and B. A.Malomed, Spatial control of the competition between self-focusing and self-defocusing nonlinearities in one-and two-dimensional systems, Phys. Rev. A90(2), 023841(2014)
CrossRef ADS Google scholar
[73]
S.Loomba, R.Pal, and C. N.Kumar, Bright solitons of the nonautonomous cubic-quintic nonlinear Schrödinger equation with sign-reversal nonlinearity, Phys. Rev. A92(3), 033811(2015)
CrossRef ADS Google scholar
[74]
J.Zengand B. A.Malomed, Stabilization of onedimensional solitons against the critical collapse by quintic nonlinear lattices, Phys. Rev. A85(2), 023824(2012)
CrossRef ADS Google scholar
[75]
M.Vakhitov, and A.Kolokolov, Stationary solutions of the wave equation in a medium with nonlinearity saturation, Radiophys. Quantum Electron. 16(7), 783(1973)
CrossRef ADS Google scholar
[76]
E. L.Falcão-Filho, C. B.de Araújo, G.Boudebs, H.Leblond, and V.Skarka, Robust two-dimensional spatial solitons in liquid carbon disulfide, Phys. Rev. Lett.110(1), 013901(2013)
CrossRef ADS Google scholar
[77]
X.Antoine, W.Bao, and C.Besse, Computational methods for the dynamics of the nonlinear Schrödinger/Gross–Pitaevskii equations, Comput. Phys. Commun. 184(12), 2621(2013)
CrossRef ADS Google scholar
[78]
A. S.Reyna, K. C.Jorge, and C. B.de Araújo, Two-dimensional solitons in a quintic-septimal medium, Phys. Rev. A90(6), 063835(2014)
CrossRef ADS Google scholar
[79]
A. S.Reyna, B. A.Malomed, and C. B.de Araújo, Stability conditions for one-dimensional optical solitons in cubicquintic-septimal media, Phys. Rev. A92(3), 033810(2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(839 KB)

Accesses

Citations

Detail

Sections
Recommended

/