Recent progress in econophysics: Chaos, leverage, and business cycles as revealed by agent-based modeling and human experiments

Chen Xin, Ji-Ping Huang

PDF(7132 KB)
PDF(7132 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (6) : 128910. DOI: 10.1007/s11467-017-0696-4
REVIEW ARTICLE
REVIEW ARTICLE

Recent progress in econophysics: Chaos, leverage, and business cycles as revealed by agent-based modeling and human experiments

Author information +
History +

Abstract

Agent-based modeling and controlled human experiments serve as two fundamental research methods in the field of econophysics. Agent-based modeling has been in development for over 20 years, but how to design virtual agents with high levels of human-like “intelligence” remains a challenge. On the other hand, experimental econophysics is an emerging field; however, there is a lack of experience and paradigms related to the field. Here, we review some of the most recent research results obtained through the use of these two methods concerning financial problems such as chaos, leverage, and business cycles. We also review the principles behind assessments of agents’ intelligence levels, and some relevant designs for human experiments. The main theme of this review is to show that by combining theory, agent-based modeling, and controlled human experiments, one can garner more reliable and credible results on account of a better verification of theory; accordingly, this way, a wider range of economic and financial problems and phenomena can be studied.

Keywords

agent-based modeling / controlled human experiment / minority game / econophysics / chaos / leverage / business cycle

Cite this article

Download citation ▾
Chen Xin, Ji-Ping Huang. Recent progress in econophysics: Chaos, leverage, and business cycles as revealed by agent-based modeling and human experiments. Front. Phys., 2017, 12(6): 128910 https://doi.org/10.1007/s11467-017-0696-4

References

[1]
H. E.Stanley, V.Afanasyev, L. A. N.Amaral, S. V.Buldyrev, A. L.Goldberger,S.Havlin, H.Leschhorn, P.Maass, R. N.Mantegna, C.Peng, P. A.Prince, M. A.Salinger, M. H. R.Stanley, and G. M.Viswanathan, Anomalous fluctuations in the dynamics of complex systems: From DNA and physiology to econophysics, Physica A224(1–2), 302 (1996)
CrossRef ADS Google scholar
[2]
J. P.Huang, Experimental econophysics: Complexity, self-organization, and emergent properties, Phys. Rep. 564, 1 (2015)
CrossRef ADS Google scholar
[3]
H. E.Stanley, Scaling, universality, and renormalization: Three pillars of modern critical phenomena, Rev. Mod. Phys. 71(2), S358(1999)
CrossRef ADS Google scholar
[4]
M. H. R.Stanley, L. A. N.Amaral, S. V.Buldyrev, S.Havlin, H.Leschhorn, P.Maass, M. A.Salinger, and H. E.Stanley, Scaling behavior in the growth of companies, Nature379(6568), 804(1996)
CrossRef ADS Google scholar
[5]
R. N.Mantegnaand H. E.Stanley, Scaling behaviour in the dynamics of an economic index, Nature376(6535), 46(1995)
CrossRef ADS Google scholar
[6]
D.Challetand Y. C.Zhang, Emergence of cooperation and organization in an evolutionary game, Physica A246(3–4), 407(1997)
CrossRef ADS Google scholar
[7]
D.Challetand Y. C.Zhang, On the minority game: Analytical and numerical studies, Physica A256(3–4), 514(1998)
CrossRef ADS Google scholar
[8]
D.Challet, M.Marsili, and Y. C.Zhang, Modeling market mechanism with minority game, Physica A276(1–2), 284(2000)
CrossRef ADS Google scholar
[9]
D.Challetand M.Marsili, Phase transition and symmetry breaking in the minority game, Phys. Rev. E60(6), R6271(1999)
CrossRef ADS Google scholar
[10]
D.Challet, M.Marsili, and R.Zecchina, Statistical Mechanics of Systems with Heterogeneous Agents: Minority Games, Phys. Rev. Lett. 84(8), 1824(2000)
CrossRef ADS Google scholar
[11]
R. N.Mantegna, and H. E.Stanley, Introduction to Econophysics: Correlations and Complexity in Finance, Cambridge: Cambridge University Press, 2000
[12]
N. F.Johnson, P.Jefferies, andP. M.Hui, Financial Market Complexity, Oxford: Oxford University Press, 2003
CrossRef ADS Google scholar
[13]
D.Challet, M.Marsili, and Y. C.Zhang, Minority Games: Interacting Agents in Financial Markets, Oxford: Oxford University Press, 2005
[14]
J.Voit, The Statistical Mechanics of Financial Markets, Berlin: Springer, 2005
[15]
A.Chakraborti, I. M.Toke, M.Patriarca, and F.Abergel, Econophysics review (I): Empirical facts, Quant. Finance11(7), 991(2011)
CrossRef ADS Google scholar
[16]
A.Chakraborti, I. M.Toke, M.Patriarca, and F.Abergel, Econophysics review (II): Agent-based models, Quant. Finance11(7), 1013(2011)
CrossRef ADS Google scholar
[17]
D.Sornette, Physics and financial economics (1776– 2014): Puzzles, Ising and agent-based models, Rep. Prog. Phys. 77(6), 062001(2014)
CrossRef ADS Google scholar
[18]
D. C.Rapaport, The Art of Molecular Dynamics Simulation, 2nd Ed., Cambridge: Cambridge University Press, 2004
CrossRef ADS Google scholar
[19]
D. P.Landauand K.Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge: Cambridge University Press, 2014
CrossRef ADS Google scholar
[20]
K.Binderand D.Heermann, Monte Carlo Simulation in Statistical Physics: An Introduction, 5th Ed., Berlin: Springer, 2010
CrossRef ADS Google scholar
[21]
L.Tesfatsionand K. L.Judd(Eds.), Handbook of Computational Economics: Agent-based Computational Economics (Vol. 2), Amsterdam: Elsevier, 2006
[22]
A model approach, Nature460(7256), 667(2009)
CrossRef ADS Google scholar
[23]
M.Niaziand A.Hussain, Agent-based tools for modeling and simulation of self-organization in peer-to-peer, ad hoc, and other complex networks, IEEE Commun. Mag. 47(3), 166(2009)
CrossRef ADS Google scholar
[24]
E.Bonabeau, Agent-based modeling: Methods and techniques for simulating human systems, Proc. Natl. Acad. Sci. USA99(Suppl. 3), 7280(2002)
CrossRef ADS Google scholar
[25]
N.Gilbertand K. G.Troitzsch, Simulation for the Social Scientist, Buckingham: Open University Press, 1999
[26]
D.Samuelson, Designing organizations, OR/MS Today27, 6 (2000)
[27]
D.Samuelson, Agents of change, OR/MS Today32, 26(2005)
[28]
D. A.Samuelsonand C. M.Macal, Agent-based modeling comes of age, OR/MS Today33, 34(2006)
[29]
R.Sun, Cognition and Multi-agent Interaction: From Cognitive Modeling to Social Simulation, Cambridge: Cambridge University Press, 2006
[30]
R.Awwad, S.Asgari, and A.Kandil, Developing a virtual laboratory for construction bidding environment using agent-based modeling, J. Comput. Civ. Eng. 29(6), 04014105(2015)
CrossRef ADS Google scholar
[31]
L.Tesfatsion, Agent-based computational economics: Growing economies from the bottom up, Artif. Life8(1), 55(2002)
CrossRef ADS Google scholar
[32]
R. M.Axelrod, The Complexity of Cooperation: Agent-based Models of Competition and Collaboration, Princeton: Princeton University Press, 1997
[33]
W. A.Brockand C. H.Hommes, A rational route to randomness, Econometrica65(5), 1059(1997)
CrossRef ADS Google scholar
[34]
R.Leombruniand M.Richiardi, Industry and Labor Dynamics: The Agent-based Computational Economics Approach, Singapore: World Scientific, 2004
CrossRef ADS Google scholar
[35]
W. A.Brock, C. H.Hommes, andF. O. O.Wagener, More hedging instruments may destabilize markets, J. Econ. Dyn. Control33(11), 1912(2009)
CrossRef ADS Google scholar
[36]
J. D.Farmerand D.Foley, The economy needs agentbased modelling, Nature460(7256), 685(2009)
CrossRef ADS Google scholar
[37]
M.Holcombe, S.Coakley, M.Kiran, S.Chin, C.Greenough, D.Worth, S.Cincotti, M.Raberto, A.Teglio, C.Deissenberg, S.van der Hoog, H.Dawid, S.Gemkow, P.Harting, and M.Neugart, Large-scale modeling of economic systems, Complex Syst. 22, 175(2013)
[38]
D.Colander, P.Howitt, A.Kirman, A.Leijonhufvud, and P.Mehrling, Beyond DSGE models: Toward an empirically based macroeconomics, Am. Econ. Rev. 98(2), 236(2008)
CrossRef ADS Google scholar
[39]
T.Płatkowskiand M.Ramsza, Playing minority game, Physica A323, 726(2003)
CrossRef ADS Google scholar
[40]
S. H.Kellert, In the Wake of Chaos: Unpredictable Order in Dynamical Systems, Chicago: University of Chicago press, 1994
[41]
C.Werndl, What are the new implications of chaos for unpredictability? Br. J. Philos. Sci.60(1), 195(2009)
CrossRef ADS Google scholar
[42]
C.Kyrtsouand W. C.Labys, Evidence for chaotic dependence between US inflation and commodity prices, J. Macroecon. 28(1), 256(2006)
CrossRef ADS Google scholar
[43]
C.Kyrtsouand W. C.Labys, Detecting positive feedback in multivariate time series: The case of metal prices and US inflation, Physica A377(1), 227(2007)
CrossRef ADS Google scholar
[44]
D.Hristu-Varsakelisand C.Kyrtsou, Evidence for nonlinear asymmetric causality in US inflation, metal, and stock returns, Discrete Dyn. Nat. Soc. 2008, 1 (2008)
[45]
C.Kyrtsouand M.Terraza, Is it possible to study chaotic and ARCH behaviour jointly? Application of a noisy Mackey–Glass equation with heteroskedastic errors to the Paris Stock Exchange returns series, Comput. Econ. 21(3), 257(2003)
CrossRef ADS Google scholar
[46]
L. A.Safonov, E.Tomer, V. V.Strygin, Y.Ashkenazy, and S.Havlin, Multifractal chaotic attractors in a system of delay-differential equations modeling road traffic, Chaos12(4), 1006(2002)
CrossRef ADS Google scholar
[47]
E. F.Brighamand J. F.Houston, Fundamentals of Financial Management, Boston: Cengage Learning, 2012
[48]
F.Saita, Value at Risk and Bank Capital Management: Risk Adjusted Performances, Capital Management and Capital Allocation Decision Making, New York:Academic Press, 2010
[49]
P. M.Madhani, Rebalancing fixed and variable pay in a sales organization: A business cycle perspective, Compens. Benefits Rev. 42(3), 179(2010)
CrossRef ADS Google scholar
[50]
H.Levy, M.Levy, and S.Solomon, Microscopic Simulation of Financial Markets: From Investor Behavior to Market Phenomena, New York: Academic Press, 2000
[51]
S. M.de Oliveira, P. M. C.de Oliveira, and D.Stauffer, Evolution, Money, War, and Computers: Non- Traditional Applications of Computational Statistical Physics, Stuttgart-Leipzig: Teubner, 1999
CrossRef ADS Google scholar
[52]
J. M.Epstein,Generative Social Science: Studies in Agent-Based Computational Modeling, Princeton: Princeton University Press, 2007
[53]
M. A.Niaziand A.Hussain, Cognitive Agent-based Computing-I: A Unified Framework for Modeling Complex Adaptive Systems Using Agent-based & Complex Network-based Methods, Berlin: Springer, 2012
[54]
H. A.Simon, The Sciences of the Artificial, Cambridge: MIT Press, 1996
[55]
J. M.Galán, L. R.Izquierdo, S. S.Izquierdo, J. I.Santos, R.Del Olmo, A.López-Paredes, and B.Edmonds, Errors and artefacts in agent-based modelling, JASSS-J ARTIF SOC S12, 1 (2009)
[56]
J. P.Huang, Econophysics: Using the Methods and Ideas of Physics to Discuss some Economic or Financial Problems, Beijing: Higher Education Press, 2013(in Chinese)
[57]
W. B.Arthur, Inductive reasoning and bounded rationality, Am. Econ. Rev. 84, 406(1994)
[58]
H.Gintis, Game Theory Evolving: A Problem-centered Introduction to Modeling Strategic Behavior, Princeton: Princeton University Press, 2000
[59]
P.Jefferies, M. L.Hart, P. M.Hui, and N. F.Johnson, From market games to real-world markets, Eur. Phys. J. B20(4), 493(2001)
CrossRef ADS Google scholar
[60]
D.Challet, M.Marsili, and Y. C.Zhang, Stylized facts of financial markets and market crashes in Minority Games, Physica A294(3–4), 514(2001)
CrossRef ADS Google scholar
[61]
K. F.Yip, P. M.Hui, T. S.Lo, and N. F.Johnson, Efficient resource distribution in a minority game with a biased pool of strategies, Physica A321(1–2), 318(2003)
CrossRef ADS Google scholar
[62]
T.Chmuraand T.Pitz, Successful strategies in repeated minority games, Physica A363(2), 477(2006)
CrossRef ADS Google scholar
[63]
J.Kimand T.Wilhelm, What is a complex graph? Physica A387(11), 2637(2008)
CrossRef ADS Google scholar
[64]
A. L.Barabási, R.Albert, and A.Wood, Emergence of scaling in random networks, Science286(5439), 509(1999)
CrossRef ADS Google scholar
[65]
D. J.Wattsand S. H.Strogatz, Collective dynamics of “small-world” networks, Nature393(6684), 440(1998)
CrossRef ADS Google scholar
[66]
L. A. N.Amaral, A.Scala, M.Barthelemy, and H. E.Stanley, Classes of small-world networks, Proc. Natl. Acad. Sci. USA97(21), 11149(2000)
CrossRef ADS Google scholar
[67]
A.Majdandzic, B.Podobnik, S. V.Buldyrev, D. Y.Kenett, S.Havlin, and H.Eugene Stanley, Spontaneous recovery in dynamical networks, Nat. Phys. 10(1), 34(2013)
[68]
D. Q.Li, B. W.Fu, Y. P.Wang, G. Q.Lu, Y.Berezin, H. E.Stanley, and S.Havlin, Percolation transition in dynamical traffic network with evolving critical bottlenecks, Proc. Natl. Acad. Sci. USA112(3), 669(2015)
CrossRef ADS Google scholar
[69]
S. V.Buldyrev, R.Parshani, G.Paul, H. E.Stanley, and S.Havlin, Catastrophic cascade of failures in interdependent networks, Nature464(7291), 1025(2010)
CrossRef ADS Google scholar
[70]
R.Parshani, S. V.Buldyrev, and S.Havlin, Interdependent networks: Reducing the coupling strength leads to a change from a first to second order percolation transition, Phys. Rev. Lett. 105(4), 048701(2010)
CrossRef ADS Google scholar
[71]
Y. W.Chen, L. F.Zhang, and J. P.Huang, The Watts– Strogatz network model developed by including degree distribution: Theory and computer simulation, J. Phys. A40(29), 8237(2007)
CrossRef ADS Google scholar
[72]
G.Yang, Y.Chen, and J. P.Huang, The highly intelligent virtual agents for modeling financial markets, Physica A443, 98(2016)
CrossRef ADS Google scholar
[73]
T.Preis, H. S.Moat, H. E.Stanley, and S. R.Bishop, Quantifying the advantage of looking forward, Sci. Rep. 2, 350(2012)
CrossRef ADS Google scholar
[74]
C. H.Yeung, K. Y. M.Wong, and Y. C.Zhang, Models of financial markets with extensive participation incentives, Phys. Rev. E77(2), 026107(2008)
CrossRef ADS Google scholar
[75]
L. X.Zhong, D. F.Zheng, B.Zheng, and P. M.Hui, Effects of contrarians in the minority game, Phys. Rev. E72(2), 026134(2005)
CrossRef ADS Google scholar
[76]
O. P.Hauser, D. G.Rand, A.Peysakhovich, and M. A.Nowak, Cooperating with the future, Nature511(7508), 220(2014)
CrossRef ADS Google scholar
[77]
S.Biswas, A.Ghosh, A.Chatterjee, T.Naskar, and B. K.Chakrabarti, Continuous transition of social efficiencies in the stochastic-strategy minority game, Phys. Rev. E85(3), 031104(2012)
CrossRef ADS Google scholar
[78]
B.Zheng, T.Qiu, and F.Ren, Two-phase phenomena, minority games, and herding models, Phys. Rev. E69(4), 046115(2004)
CrossRef ADS Google scholar
[79]
M.Anghel, Z.Toroczkai, K. E.Bassler, and G.Korniss, Competition-driven network dynamics: Emergence of a scale-free leadership structure and collective efficiency, Phys. Rev. Lett. 92(5), 058701(2004)
CrossRef ADS Google scholar
[80]
D.Challetand M.Marsili, Criticality and market efficiency in a simple realistic model of the stock market, Phys. Rev. E68(3), 036132(2003)
CrossRef ADS Google scholar
[81]
W.Wang, Y.Chen, and J. P.Huang, Heterogeneous preferences, decision-making capacity, and phase transitions in a complex adaptive system, Proc. Natl. Acad. Sci. USA106(21), 8423(2009)
CrossRef ADS Google scholar
[82]
X. H.Li, G.Yang, and J. P.Huang, Chaotic-periodic transition in a two-sided minority game, Front. Phys. 11(4), 118901(2016)
CrossRef ADS Google scholar
[83]
J. C.RochetandJ.Tirole, Platform competition in twosided markets, J. Eur. Econ. Assoc. 1(4), 990(2003)
CrossRef ADS Google scholar
[84]
G. G.Parkerand M. W.Van Alstyne, Two-sided network effects: A theory of information product design, Manage. Sci. 51(10), 1494(2005)
CrossRef ADS Google scholar
[85]
Y.Zhangand W. H.Wan, States and transitions in mixed networks, Front. Phys. 9(4), 523(2014)
CrossRef ADS Google scholar
[86]
Y. H.Chen, W.Wu, G. C.Liu, H. S.Tao, and W. M.Liu, Quantum phase transition of cold atoms trapped in optical lattices, Front. Phys. 7(2), 223(2012)
CrossRef ADS Google scholar
[87]
Y.Liangand J. P.Huang, Robustness of critical points in a complex adaptive system: Effects of hedge behavior, Front. Phys. 8(4), 461(2013)
CrossRef ADS Google scholar
[88]
B. B.Mandelbrotand J. W.Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10(4), 422(1968)
CrossRef ADS Google scholar
[89]
P.Bak, C.Tang, and K.Wiesenfeld, Self-organized criticality: An explanation of the 1/fnoise, Phys. Rev. Lett. 59(4), 381(1987)
CrossRef ADS Google scholar
[90]
F. S.Gharehchopoghand Z. A.Dizaji, A new chaos agent based approach in prediction of the road accidents with hybrid of PSO optimization and chaos optimization algorithms: A case study, Int. J. Acad. Res. 6(2), 108(2014)
CrossRef ADS Google scholar
[91]
S.Das, D.Goswami, S.Chatterjee, and S.Mukherjee, Stability and chaos analysis of a novel swarm dynamics with applications to multi-agent systems, Eng. Appl. Artif. Intell. 30, 189(2014)
CrossRef ADS Google scholar
[92]
T.Yang, Z.Meng, D.Dimarogonas, and K.Johansson, Periodic behaviors for discrete-time second-order multiagent systems with input saturation constraints, IEEE Trans. Circuits Syst., II Express Briefs63(7), 663(2016)
CrossRef ADS Google scholar
[93]
S.Kalemli-Ozcan, B.Sorensen, and S.Yesiltas,Leverage across firms, banks, and countries, J. Int. Econ. 88(2), 284(2012)
CrossRef ADS Google scholar
[94]
T.Adrianand H. S.Shin, Liquidity and leverage, J. Financ. Intermed. 19(3), 418(2010)
CrossRef ADS Google scholar
[95]
R.Kollmannand S.Zeugner, Leverage as a predictor for real activity and volatility, J. Econ. Dyn. Control36(8), 1267(2012)
CrossRef ADS Google scholar
[96]
H.Jinand X. Y.Zhou, Greed, leverage, and potential losses: A prospect theory perspective, Math. Finance23(1), 122(2013)
CrossRef ADS Google scholar
[97]
F.Coricelli, N.Driffield, S.Pal, and I.Roland, When does leverage hurt productivity growth? A firm-level analysis, J. Int. Money Finance31(6), 1674(2012)
CrossRef ADS Google scholar
[98]
L.Lang, E.Ofek, and R.Stulz, Leverage, investment, and firm growth, J. Financ. Econ. 40(1), 3 (1996)
CrossRef ADS Google scholar
[99]
R. R.Chen, N. K.Chidambaran, M. B.Imerman, and B. J.Sopranzetti, Liquidity, leverage, and Lehman: A structural analysis of financial institutions in crisis, J. Bank. Finance45, 117(2014)
CrossRef ADS Google scholar
[100]
S.Thurner, J. D.Farmer, and J.Geanakoplos, Leverage causes fat tails and clustered volatility, Quant. Finance12(5), 695(2012)
CrossRef ADS Google scholar
[101]
J.Carmassi, D.Gros, and S.Micossi, The global financial crisis: Causes and cures, J. Common Mark. Stud. 47(5), 977(2009)
CrossRef ADS Google scholar
[102]
V. V.AcharyaandS.Viswanathan, Leverage, moral hazard, and liquidity, J. Finance66(1), 99(2011)
CrossRef ADS Google scholar
[103]
A.FostelandJ.Geanakoplos, Leverage cycles and the anxious economy, Am. Econ. Rev. 98(4), 1211(2008)
CrossRef ADS Google scholar
[104]
S.Poledna, S.Thurner, J. D.Farmer, and J.Geanakoplos, Leverage-induced systemic risk under Basle II and other credit risk policies, J. Bank. Finance42, 199(2014)
CrossRef ADS Google scholar
[105]
I.Kiemaand E.Jokivuolle, Does a leverage ratio requirement increase bank stability? J. Bank. Finance39, 240(2014)
CrossRef ADS Google scholar
[106]
G.Yang, C. G.Zhu, K. N.An, and J. P.Huang, Overall fluctuations and fat tails in an artificial financial market: The two-sided impact of leveraged trading, Phys. Lett. A379(34–35), 1857(2015)
CrossRef ADS Google scholar
[107]
R.Contand J. P.Bouchaud, Herd behavior and aggregate fluctuations in financial markets, Macroecon. Dyn. 4(02), 170(2000)
CrossRef ADS Google scholar
[108]
J. D.Farmer, Market force, ecology and evolution, Ind. Corp. Change11(5), 895(2002)
CrossRef ADS Google scholar
[109]
R.Cont, Empirical properties of asset returns: stylized facts and statistical issues, Quant. Finance1(2), 223(2001)
CrossRef ADS Google scholar
[110]
C. G.Zhu, G.Yang, K. N.An, and J. P.Huang, The leverage effect on wealth distribution in a controllable laboratory stock market, PLoS One9(6), e100681(2014)
CrossRef ADS Google scholar
[111]
C.Aymannsand J. D.Farmer, The dynamics of the leverage cycle, J. Econ. Dyn. Control50, 155(2015)
CrossRef ADS Google scholar
[112]
T.Breuer, M.Jandačka, M.Summer, and H. J.Vollbrecht, Endogenous leverage and asset pricing in double auctions, J. Econ. Dyn. Control53, 144(2015)
CrossRef ADS Google scholar
[113]
T.Fischerand J.Riedler, Prices, debt and market structure in an agent-based model of the financial market, J. Econ. Dyn. Control48, 95(2014)
CrossRef ADS Google scholar
[114]
K. S.Korolevand D. R.Nelson, Competition and cooperation in one-dimensional Stepping-Stone models, Phys. Rev. Lett. 107(8), 088103(2011)
CrossRef ADS Google scholar
[115]
S. A.West, I.Pen, and A. S.Griffin, Cooperation and competition between relatives, Science296(5565), 72(2002)
CrossRef ADS Google scholar
[116]
E.Elliottand L. D.Kiel, Exploring cooperation and competition using agent-based modeling, Proc. Natl. Acad. Sci. USA99(Suppl.3), 7193(2002)
CrossRef ADS Google scholar
[117]
M.Anghel, Z.Toroczkai, K. E.Bassler, and G.Korniss, Competition-driven network dynamics: Emergence of a scale-free leadership structure and collective efficiency, Phys. Rev. Lett. 92(5), 058701(2004)
CrossRef ADS Google scholar
[118]
P.Liand H. B.Duan, Robustness of cooperation on scale-free networks in the evolutionary prisoner’s dilemma game, EPL105(4), 48003(2014)
CrossRef ADS Google scholar
[119]
M.Assaf, M.Mobilia, and E.Roberts, Cooperation dilemma in finite populations under fluctuating environments, Phys. Rev. Lett. 111(23), 238101(2013)
CrossRef ADS Google scholar
[120]
A.Szolnoki, A.Antonioni, M.Tomassini, and M.Perc, Binary birth-death dynamics and the expansion of cooperation by means of self-organized growth, EPL105(4), 48001(2014)
CrossRef ADS Google scholar
[121]
C. M.Song, Z. H.Qu, N.Blumm, and A. L.Barabási, Limits of predictability in human mobility, Science327(5968), 1018(2010)
CrossRef ADS Google scholar
[122]
X. H.Li, G.Yang, K. N.An, and J. P.Huang, Human behavioral regularity, fractional Brownian motion, and exotic phase transition, Phys. Lett. A380(37), 2912(2016)
CrossRef ADS Google scholar
[123]
N.Xi, P.Ormerod, and Y. G.Wang, Technological innovation, business cycles and self-organized criticality in market economies, EPL97(6), 68005(2012)
CrossRef ADS Google scholar
[124]
S.Gualdi, J. P.Bouchaud, G.Cencetti, M.Tarzia, and F.Zamponi, Endogenous crisis waves: Stochastic model with synchronized collective behavior, Phys. Rev. Lett. 114(8), 088701(2015)
CrossRef ADS Google scholar
[125]
M.Ciccarelliand B.Mojon, Global inflation, Rev. Econ. Stat. 92(3), 524(2010)
CrossRef ADS Google scholar
[126]
A. W.Bowmanand A.Azzalini, Applied Smoothing Techniques for Data Analysis, Oxford: Oxford University Press, 1997
[127]
N. S.Altman, An introduction to kernel and nearestneighbor nonparametric regression, Am. Stat. 46, 175(1992)
[128]
P.Bak, C.Tang, and K.Wiesenfeld, Self-organized criticality: An explanation of the 1/fnoise, Phys. Rev. Lett. 59(4), 381(1987)
CrossRef ADS Google scholar
[129]
B. D.Malamudand D. L.Turcotte, Self-affine time series: Measures of weak and strong persistence, J. Stat. Plan. Inference80(1–2), 173(1999)
CrossRef ADS Google scholar
[130]
M.Niemann, H.Kantz, and E.Barkai, Fluctuations of 1/fnoise and the low-frequency cutoff paradox, Phys. Rev. Lett. 110(14), 140603(2013)
CrossRef ADS Google scholar
[131]
A.Godecand R.Metzler, Linear response, fluctuationdissipation, and finite-system-size effects in superdiffusion, Phys. Rev. E88(1), 012116(2013)
CrossRef ADS Google scholar
[132]
T.Qiu, Z. K.Zhang, and G.Chen, Information filtering via a scaling-based function, PLoS One8(5), e63531(2013)
CrossRef ADS Google scholar
[133]
M. S.Taqqu, V.Teverovsky, and W.Willinger, Estimators for long-range dependence: An empirical study, Fractals03(04), 785(1995)
CrossRef ADS Google scholar
[134]
E. J.Erlingsson, A.Teglio, S.Cincotti, H.Stefansson, J. T.Sturluson, and M.Raberto, Housing market bubbles and business cycles in an agent-based credit economy, Economics8, 1 (2014)
CrossRef ADS Google scholar
[135]
R.Grilli, G.Tedeschi, and M.Gallegati, Markets connectivity and financial contagion, J. Econ. Interact. Coord. 10(2), 287(2015)
CrossRef ADS Google scholar
[136]
J. P.Huang, Experimental Econophysics: Properties and Mechanisms of Laboratory Markets, Berlin: Springer, 2015
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(7132 KB)

Accesses

Citations

Detail

Sections
Recommended

/