Topological superradiant state in Fermi gases with cavity induced spin–orbit coupling

Dongyang Yu, Jian-Song Pan, Xiong-Jun Liu, Wei Zhang, Wei Yi

Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 136701.

PDF(543 KB)
PDF(543 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 136701. DOI: 10.1007/s11467-017-0695-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Topological superradiant state in Fermi gases with cavity induced spin–orbit coupling

Author information +
History +

Abstract

Coherently driven atomic gases inside optical cavities hold great promise for generating rich dynamics and exotic states of matter. It was shown recently that an exotic topological superradiant state exists in a two-component degenerate Fermi gas coupled to a cavity, where local order parameters coexist with global topological invariants. In this work, we characterize in detail various properties of this exotic state, focusing on the feedback interactions between the atoms and the cavity field. In particular, we demonstrate that cavity-induced interband coupling plays a crucial role in inducing the topological phase transition between the conventional and topological superradiant states. We analyze the interesting signatures in the cavity field left by the closing and reopening of the atomic bulk gap across the topological phase boundary and discuss the robustness of the topological superradiant state by investigating the steady-state phase diagram under various conditions. Furthermore, we consider the interaction effect and discuss the interplay between the pairing order in atomic ensembles and the superradiance of the cavity mode. Our work provides many valuable insights into the unique cavity– atom hybrid system under study and is helpful for future experimental exploration of the topological superradiant state.

Keywords

superradiance / topological phase / Fermi gas / cavity QED

Cite this article

Download citation ▾
Dongyang Yu, Jian-Song Pan, Xiong-Jun Liu, Wei Zhang, Wei Yi. Topological superradiant state in Fermi gases with cavity induced spin–orbit coupling. Front. Phys., 2018, 13(1): 136701 https://doi.org/10.1007/s11467-017-0695-5

References

[1]
Y. J.Lin, K.Jiménez-García, and I. B.Spielman, Spin–orbit-coupled Bose–Einstein condensates, Nature471(7336), 83 (2011)
CrossRef ADS Google scholar
[2]
P.Wang, Z. Q.Yu, Z.Fu, J.Miao, L.Huang, S.Chai, H.Zhai, and J.Zhang, Spin–orbit coupled degenerate Fermi gases, Phys. Rev. Lett. 109(9), 095301(2012)
CrossRef ADS Google scholar
[3]
L. W.Cheuk, A. T.Sommer, Z.Hadzibabic,T.Yefsah, W. S.Bakr, and M. W.Zwierlein, Spin-injection spectroscopy of a spin–orbit coupled Fermi gas, Phys. Rev. Lett. 109(9), 095302(2012)
CrossRef ADS Google scholar
[4]
Z. Y.Shi, X. L.Cui, and H.Zhai, Universal trimers induced by spin–orbit coupling in ultracold Fermi gases, Phys. Rev. Lett. 112(1), 013201(2014)
CrossRef ADS Google scholar
[5]
X. L.Cuiand W.Yi, Universal Borromean binding in spin–orbit-coupled ultracold Fermi gases, Phys. Rev. X4(3), 031026(2014)
CrossRef ADS Google scholar
[6]
L.Zhou, X. L.Cui, and W.Yi, Three-component ultracold Fermi gases with spin–orbit coupling, Phys. Rev. Lett. 112(19), 195301(2014)
CrossRef ADS Google scholar
[7]
V.Galitskiand I. B.Spielman, Spin–orbit coupling in quantum gases, Nature494(7435), 49(2013)
CrossRef ADS Google scholar
[8]
N.Goldman, G.Juzeliünas, P.Öhberg, and I. B.Spielman, Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys. 77(12), 126401(2014)
CrossRef ADS Google scholar
[9]
X.Zhou, Y.Li, Z.Cai, and C.Wu, Unconventional states of bosons with the synthetic spin–orbit coupling, J. Phys. At. Mol. Opt. Phys. 46(13), 134001(2013)
CrossRef ADS Google scholar
[10]
H.Zhai, Degenerate quantum gases with spin–orbit coupling: A review, Rep. Prog. Phys. 78(2), 026001(2015)
CrossRef ADS Google scholar
[11]
W.Yi, W.Zhang, and X. L.Cui, Pairing superfluidity in spin–orbit coupled ultracold Fermi gases, Sci. China Phys. Mech. Astron. 58(1), 1 (2015)
CrossRef ADS Google scholar
[12]
J.Zhang, J.Hu, X. J.Liu, and H.Pu, Fermi gases with synthetic spin–orbit coupling, Ann. Rev. Cold At. Mol. 2, 81(2014)
CrossRef ADS Google scholar
[13]
Y.Xuand C.Zhang, Topological Fulde–Ferrell superfluids of a spin–orbit coupled Fermi gas, Int. J. Mod. Phys. B29(01), 1530001(2015)
CrossRef ADS Google scholar
[14]
Y.Zhang, M. E.Mossman, T.Busch, P.Engels, and C.Zhang, Properties of spin–orbit-coupled Bose–Einstein condensates, Front. Phys. 11(3), 118103(2016)
CrossRef ADS Google scholar
[15]
M. Z.HasanandC. L.Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045(2010)
CrossRef ADS Google scholar
[16]
X. L.Qiand S. C.Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057(2011)
CrossRef ADS Google scholar
[17]
J.Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys. 75(7), 076501(2012)
CrossRef ADS Google scholar
[18]
C.Zhang,S.Tewari, R. M.Lutchyn, andS.Das Sarma, px+ipysuperfluid from s-wave interactions of fermionic cold atoms, Phys. Rev. Lett. 101(16), 160401(2008)
CrossRef ADS Google scholar
[19]
M.Sato,Y.Takahashi, and S.Fujimoto, Non-Abelian topological order in s-wave superfluids of ultracold fermionic atoms, Phys. Rev. Lett. 103(2), 020401(2009)
CrossRef ADS Google scholar
[20]
C.Qu, Z.Zheng, M.Gong, Y.Xu, L.Mao, X.Zou, G.Guo, andC.Zhang, Topological superfluids with finitemomentum pairing and Majorana fermions, Nat. Commun. 4, 2710(2013)
CrossRef ADS Google scholar
[21]
W.Zhangand W.Yi, Topological Fulde–Ferrell– Larkin–Ovchinnikov states in spin–orbit-coupled Fermi gases, Nat. Commun. 4, 2711(2013)
CrossRef ADS Google scholar
[22]
X. J.Liu, Z. X.Liu, and M.Cheng, Manipulating topological edge spins in a one-dimensional optical lattice, Phys. Rev. Lett. 110(7), 076401(2013)
CrossRef ADS Google scholar
[23]
X. J.Liu, K. T.Law, and T. K.Ng, Realization of 2D spin–orbit interaction and exotic topological orders in cold atoms, Phys. Rev. Lett. 112(8), 086401(2014) [Erratum: X. J.Liu, K. T.Law, and T. K.Ng, Phys. Rev. Lett. 113, 059901(2014)]
CrossRef ADS Google scholar
[24]
F.Brennecke, T.Donner, S.Ritter, T.Bourdel, M.Köhl, and T.Esslinger, Cavity QED with a Bose– Einstein condensate, Nature450(7167), 268(2007)
CrossRef ADS Google scholar
[25]
K.Baumann, C.Guerlin, F.Brennecke, and T.Esslinger, Dicke quantum phase transition with a superfluid gas in an optical cavity, Nature464(7293), 1301(2010)
CrossRef ADS Google scholar
[26]
H.Ritsch, P.Domokos, F.Brennecke, and T.Esslinger, Cold atoms in cavity-generated dynamical optical potentials, Rev. Mod. Phys. 85(2), 553(2013)
CrossRef ADS Google scholar
[27]
P.Domokosand H.Ritsch, Collective cooling and selforganization of atoms in a cavity, Phys. Rev. Lett. 89(25), 253003(2002)
CrossRef ADS Google scholar
[28]
F.Dimer, B.Estienne, A. S.Parkins, and H. J.Carmichael, Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system, Phys. Rev. A75(1), 013804(2007)
CrossRef ADS Google scholar
[29]
D.Nagy, G.Konya, G.Szirmai, and P.Domokos, Dickemodel phase transition in the quantum motion of a Bose–Einstein condensate in an optical cavity, Phys. Rev. Lett. 104(13), 130401(2010)
CrossRef ADS Google scholar
[30]
R.Landig, F.Brennecke, R.Mottl, T.Donner, and T.Esslinger, Measuring the dynamic structure factor of a quantum gas undergoing a structural phase transition, Nat. Commun. 6, 7046(2015)
CrossRef ADS Google scholar
[31]
J.Keeling, M. J.Bhaseen, and B. D.Simons, Fermionic superradiance in a transversely pumped optical cavity, Phys. Rev. Lett. 112(14), 143002(2014)
CrossRef ADS Google scholar
[32]
F.PiazzaandP.Strack, Umklapp superradiance with a collisionless quantum degenerate Fermi gas, Phys. Rev. Lett. 112(14), 143003(2014)
CrossRef ADS Google scholar
[33]
Y.Chen, Z.Yu, and H.Zhai, Superradiance of degenerate Fermi gases in a cavity, Phys. Rev. Lett. 112(14), 143004(2014)
CrossRef ADS Google scholar
[34]
Y.Deng, J.Cheng, H.Jing, and S.Yi, Bose–Einstein condensates with cavity-mediated spin–orbit coupling, Phys. Rev. Lett. 112(14), 143007(2014)
CrossRef ADS Google scholar
[35]
L.Dong, L.Zhou,B.Wu, B.Ramachandhran, and H.Pu, Cavity-assisted dynamical spin–orbit coupling in cold atoms, Phys. Rev. A89, 011602(R)(2014)
[36]
J. S.Pan, X. J.Liu, W.Zhang, W.Yi, and G. C.Guo,Topological superradiant states in a degenerate Fermi gas, Phys. Rev. Lett. 115(4), 045303(2015)
CrossRef ADS Google scholar
[37]
L.Dong, C.Zhu, and H.Pu, Photon-induced spin–orbit coupling in ultracold atoms inside optical cavity, Atoms3(2), 182(2015)
CrossRef ADS Google scholar
[38]
C.Kollath, A.Sheikhan, S.Wolff, and F.Brennecke, Ultracold Fermions in a cavity-induced artificial magnetic field, Phys. Rev. Lett. 116(6), 060401(2016)
CrossRef ADS Google scholar
[39]
M.Wang, P.Meystre, W.Zhang, and Q.He, Steadystate atom-light entanglement with engineered spin– orbit coupling, Phys. Rev. A93(4), 042311(2016)
CrossRef ADS Google scholar
[40]
L.Zhouand X. L.Cui, Spin–orbit coupled ultracold gases in optical lattices: High-band physics and insufficiency of tight-binding models, Phys. Rev. B92(14), 140502(2015)
CrossRef ADS Google scholar
[41]
R.Gehr, J.Volz, G.Dubois, T.Steinmetz, Y.Colombe, B. L.Lev, R.Long, J.Estève, andJ.Reichel, Cavitybased single atom preparation and high-fidelity hyperfine state readout, Phys. Rev. Lett. 104(20), 203602(2010)
CrossRef ADS Google scholar
[42]
W.Zhang, G. D.Lin, and L. M.Duan, BCS–BEC crossover of a quasi-two-dimensional Fermi gas: The significance of dressed molecules, Phys. Rev. A77(6), 063613(2008)
CrossRef ADS Google scholar
[43]
W.Zhang, G. D.Lin, and L. M.Duan, Berezinskii– Kosterlitz–Thouless transition in a trapped quasi-twodimensional Fermi gas near a Feshbach resonance, Phys. Rev. A78(4), 043617(2008)
CrossRef ADS Google scholar
[44]
J.-K.Wang, W.Yi, and W.Zhang, Two-body physics in quasi-low-dimensional atomic gases under spin–orbit coupling, Front. Phys. 11(3), 118102(2016)
CrossRef ADS Google scholar
[45]
M.Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons, Phys. Rev. Lett. 81(5), 938(1998)
CrossRef ADS Google scholar
[46]
H.Moritz, T.Stöferle, M.Köhl, and T.Esslinger, Exciting collective oscillations in a trapped 1D gas, Phys. Rev. Lett. 91(25), 250402(2003)
CrossRef ADS Google scholar
[47]
T.Kinoshita, T.Wenger, and D. S.Weiss, Observation of a one-dimensional Tonks–Girardeau gas, Science305(5687), 1125(2004)
CrossRef ADS Google scholar
[48]
B.Paredes, A.Widera,V.Murg, O.Mandel, S.Fölling, I.Cirac, G. V.Shlyapnikov, T. W.Hänsch, and I.Bloch, Tonks–Girardeau gas of ultracold atoms in an optical lattice, Nature429(6989), 277(2004)
CrossRef ADS Google scholar
[49]
X. J.Liu, H.Hu, and P. D.Drummond, Fulde– Ferrell–Larkin–Ovchinnikov states in one-dimensional spin-polarized ultracold atomic Fermi gases, Phys. Rev. A76(4), 043605(2007)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(543 KB)

Accesses

Citations

Detail

Sections
Recommended

/