Entanglement of coherent superposition of photon-subtraction squeezed vacuum

Cun-Jin Liu , Wei Ye , Wei-Dong Zhou , Hao-Liang Zhang , Jie-Hui Huang , Li-Yun Hu

Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 120307

PDF (3262KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 120307 DOI: 10.1007/s11467-017-0694-6
RESEARCH ARTICLE

Entanglement of coherent superposition of photon-subtraction squeezed vacuum

Author information +
History +
PDF (3262KB)

Abstract

A new kind of non-Gaussian quantum state is introduced by applying nonlocal coherent superposition (τa + sb)m of photon subtraction to two single-mode squeezed vacuum states, and the properties of entanglement are investigated according to the degree of entanglement and the average fidelity of quantum teleportation. The state can be seen as a single-variable Hermitian polynomial excited squeezed vacuum state, and its normalization factor is related to the Legendre polynomial. It is shown that, for τ=s, the maximum fidelity can be achieved, even over the classical limit (1/2), only for evenorder operation m and equivalent squeezing parameters in a certain region. However, the maximum entanglement can be achieved for squeezing parameters with a π phase difference. These indicate that the optimal realizations of fidelity and entanglement could be different from one another. In addition, the parameter τ/s has an obvious effect on entanglement and fidelity.

Keywords

non-Gaussian operation / quantum entanglement / squeezed state

Cite this article

Download citation ▾
Cun-Jin Liu, Wei Ye, Wei-Dong Zhou, Hao-Liang Zhang, Jie-Hui Huang, Li-Yun Hu. Entanglement of coherent superposition of photon-subtraction squeezed vacuum. Front. Phys., 2017, 12(5): 120307 DOI:10.1007/s11467-017-0694-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D.Bouwmeester,A.Ekert, and A.Zeilinger, The Physics of Quantum Information, Berlin: Springer, 2000

[2]

J.Eisert, S.Scheel, and M. B.Plenio, Distilling Gaussian states with gaussian operations is impossible, Phys. Rev. Lett. 89(13), 137903 (2002)

[3]

L. Y.Hu, X. X.Xu, Z. S.Wang, and X. F.Xu, Photonsubtracted squeezed thermal state: Nonclassicality and decoherence, Phys. Rev. A82(4), 043842(2010)

[4]

L. Y.Huand Z. M.Zhang, Statistical properties of coherent photon-added two-mode squeezed vacuum and its inseparability, J. Opt. Soc. Am. B30(3), 518(2013)

[5]

L. Y.Hu, X. X.Xu, and H. Y.Fan, Statistical properties of photon-subtracted two-mode squeezed vacuum and its decoherence in thermal environment, J. Opt. Soc. Am. B27(2), 286(2010)

[6]

L. Y.Huand Z. M.Zhang, Nonclassicality and decoherence of photon-added squeezed thermal state in thermal environment, J. Opt. Soc. Am. B29(4), 529(2012)

[7]

J. N.Wu, S. Y.Liu, L. Y.Hu, J. H.Huang, Z. L.Duan, and Y. H.Ji, Improving entanglement of even entangled coherent states by a coherent superposition of photon subtraction and addition, J. Opt. Soc. Am. B32(11), 2299(2015)

[8]

L. Y.Hu, J. N.Wu, Z. Y.Liao, and M. S.Zubairy, Multiphoton catalysis with coherent state input: Nonclassicality and decoherence, J. Phys. B At. Mol. Opt. Phys. 49(17), 175504(2016)

[9]

A.Ourjoumtsev, A.Dantan, R.Tualle-Brouri, and P.Grangier, Increasing entanglement between Gaussian states by coherent photon subtraction, Phys. Rev. Lett. 98(3), 030502(2007)

[10]

D. E.Browne, J.Eisert, S.Scheel, and M. B.Plenio, Driving non-Gaussian to Gaussian states with linear optics, Phys. Rev. A67(6), 062320(2003)

[11]

S. Y.Leeand H.Nha, Quantum state engineering by a coherent superposition of photon subtraction and addition, Phys. Rev. A82(5), 053812(2010)

[12]

S. Y.Lee, S. W.Ji, H. J.Kim, and H.Nha, Enhancing quantum entanglement for continuous variables by a coherent superposition of photon subtraction and addition, Phys. Rev. A84(1), 012302(2011)

[13]

G. S.Agarwaland K.Tara, Nonclassical properties of states generated by the excitations on a coherent state, Phys. Rev. A43(1), 492(1991)

[14]

D.Wang, M.Li, F.Zhu, Z. Q.Yin, W.Chen, Z. F.Han, G. C.Guo, and Q.Wang, Quantum key distribution with the single-photon-added coherent source, Phys. Rev. A90(6), 062315(2014)

[15]

P.Huang, G. Q.He, J.Fang, and G. H.Zeng, Performance improvement of continuous-variable quantum key distribution via photon subtraction, Phys. Rev. A87(1), 012317(2013)

[16]

T. J.Bartley, G.Donati, J. B.Spring, X. M.Jin, M.Barbieri, A.Datta, B. J.Smith, andI. A.Walmsley, Multiphoton state engineering by heralded interference between single photons and coherent states, Phys. Rev. A86(4), 043820(2012)

[17]

C.Navarrete-Benlloch, R.García-Patrón, J. H.Shapiro, and N. J.Cerf, Enhancing quantum entanglement by photon addition and subtraction, Phys. Rev. A86(1), 012328(2012)

[18]

T. J.Bartley, P. J. D.Crowley, A.Datta, J.Nunn, L.Zhang, and I.Walmsley, Strategies for enhancing quantum entanglement by local photon subtraction, Phys. Rev. A87(2), 022313(2013)

[19]

L. Y.Hu, F.Jia, and Z. M.Zhang, Entanglement and nonclassicality of photon-added two-mode squeezed thermal state, J. Opt. Soc. Am. B29(6), 1456(2012)

[20]

J.Fiurášek, Improving entanglement concentration of Gaussian states by local displacements, Phys. Rev. A84(1), 012335(2011)

[21]

H. L.Zhang, Y. Q.Hu, F.Jia, and L. Y.Hu, Entanglement of photon-subtracted two-mode squeezed thermal state and its decoherence in thermal environments, Int. J. Theor. Phys. 53(6), 2091(2014)

[22]

Y.Kurochkin, A. S.Prasad, and A. I.Lvovsky, Distillation of the two-mode squeezed state, Phys. Rev. Lett. 112(7), 070402(2014)

[23]

L. Y.Hu, Z. Y.Liao, and M. S.Zubairy, Continuousvariable entanglement via multiphoton catalysis, Phys. Rev. A95(1), 012310(2017)

[24]

J.Fiurášek, Conditional generation of N-photon entangled states of light, Phys. Rev. A65(5), 053818(2002)

[25]

P.Kok, H.Lee, and J. P.Dowling, Creation of large photon-number path entanglement conditioned on photo detection, Phys. Rev. A65(5), 052104(2002)

[26]

S. Y.Leeand H.Nha, Second-order superposition operations via Hong–Ou–Mandel interference, Phys. Rev. A85(4), 043816(2012)

[27]

A.Bandyopadhyay, S.Prabhakar, and R. P.Singh, Entanglement of a quantum optical elliptic vortex, Phys. Lett. A375(19), 1926(2011)

[28]

A.Bandyopadhyayand R. P.Singh, Wigner distribution of elliptical quantum optical vortex, Opt. Commun. 284(1), 256(2011)

[29]

Y. Z.Li, F.Jia,H. L.Zhang, J. H.Huang, and L. Y.Hu, Hermite polynomial excited squeezed vacuum as quantum optical vortex states, Laser Phys. Lett. 12(11), 115203(2015)

[30]

H. R.Li, F. L.Li, and S. Y.Zhu,Inseparability of photon-added Gaussian states, Phys. Rev. A75(6), 062318(2007)

[31]

A.Ourjoumtsev, F.Ferreyrol, R.Tualle-Brouri, and P.Grangier, Preparation of non-local superpositions of quasi-classical light states, Nat. Phys. 5(3), 189(2009)

[32]

A.Ourjoumtsev, A.Dantan, R.Tualle-Brouri, and P.Grangier, Increasing entanglement between Gaussian states by coherent photon subtraction, Phys. Rev. Lett. 98(3), 030502(2007)

[33]

G. S.Agarwal, M.Graf, M.Orszag, M. O.Scully, and H.Walther, State preparation via quantum coherence and continuous measurement, Phys. Rev. A49(5), 4077(1994)

[34]

M. S.Scullyand M. S.Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1997

[35]

S. Y.Liu, Y. Z.Li, L. Y.Hu, J. H.Huang, X. X.Xu, and X. Y.Tao, Nonclassical properties of Hermite polynomial excitation on squeezed vacuum and its decoherence in phase-sensitive reservoirs, Laser Phys. Lett. 12(4), 045201(2015)

[36]

G.Ren, J. M.Du, H.Yu, and Y. J.Xu, Nonclassical properties of Hermite polynomial’s coherent state, J. Opt. Soc. Am. B29(12), 3412(2012)

[37]

F.Jia, C. J.Liu, Y. Q.Hu, and H. Y.Fan, New formula for calculating the fidelity of teleportation and its applications, Acta Physica Sinica65, 220302(2016)

[38]

S. L.Braunsteinand H. J.Kimble, Teleportation of continuous quantum variables, Phys. Rev. Lett. 80(4), 869(1998)

[39]

L.Vaidman, Teleportation of quantum states, Phys. Rev. A49(2), 1473(1994)

[40]

L. Y.Hu, Z. Y.Liao, S. L.Ma, and M. S.Zubairy, Optimal fidelity of teleportation with continuous variables using three tunable parameters in a realistic environment, Phys. Rev. A93(3), 033807(2016)

[41]

P.Marianand T. A.Marian, Continuous-variable teleportation in the characteristic-function description, Phys. Rev. A74(4), 042306(2006)

[42]

H.Jeong, M. S.Kim, and J.Lee, Quantum-information processing for a coherent superposition state via a mixedentangled coherent channel, Phys. Rev. A64(5), 052308(2001)

[43]

S. J.van Enkand O.Hirota, Entangled coherent states: Teleportation and decoherence, Phys. Rev. A64(2), 022313(2001)

[44]

S.Wang, L. L.Hou, X. F.Chen, and X. F.Xu, Continuous variable quantum teleportation with non-Gaussian entangled states generated via multiple-photon subtraction and addition, Phys. Rev. A91(6), 063832(2015)

[45]

K. M.Zheng, S. Y.Liu, H. L.Zhang, C. J.Liu, and L. Y.Hu, A generalized two-mode entangled state: Its generation, properties, and applications, Front. Phys. 9(4), 451(2014)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (3262KB)

960

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/