Entanglement of coherent superposition of photon-subtraction squeezed vacuum
Cun-Jin Liu, Wei Ye, Wei-Dong Zhou, Hao-Liang Zhang, Jie-Hui Huang, Li-Yun Hu
Entanglement of coherent superposition of photon-subtraction squeezed vacuum
A new kind of non-Gaussian quantum state is introduced by applying nonlocal coherent superposition (τa + sb)m of photon subtraction to two single-mode squeezed vacuum states, and the properties of entanglement are investigated according to the degree of entanglement and the average fidelity of quantum teleportation. The state can be seen as a single-variable Hermitian polynomial excited squeezed vacuum state, and its normalization factor is related to the Legendre polynomial. It is shown that, for τ=s, the maximum fidelity can be achieved, even over the classical limit (1/2), only for evenorder operation m and equivalent squeezing parameters in a certain region. However, the maximum entanglement can be achieved for squeezing parameters with a π phase difference. These indicate that the optimal realizations of fidelity and entanglement could be different from one another. In addition, the parameter τ/s has an obvious effect on entanglement and fidelity.
non-Gaussian operation / quantum entanglement / squeezed state
[1] |
D.Bouwmeester,A.Ekert, and A.Zeilinger, The Physics of Quantum Information, Berlin: Springer, 2000
CrossRef
ADS
Google scholar
|
[2] |
J.Eisert, S.Scheel, and M. B.Plenio, Distilling Gaussian states with gaussian operations is impossible, Phys. Rev. Lett. 89(13), 137903 (2002)
CrossRef
ADS
Google scholar
|
[3] |
L. Y.Hu, X. X.Xu, Z. S.Wang, and X. F.Xu, Photonsubtracted squeezed thermal state: Nonclassicality and decoherence, Phys. Rev. A82(4), 043842(2010)
CrossRef
ADS
Google scholar
|
[4] |
L. Y.Huand Z. M.Zhang, Statistical properties of coherent photon-added two-mode squeezed vacuum and its inseparability, J. Opt. Soc. Am. B30(3), 518(2013)
CrossRef
ADS
Google scholar
|
[5] |
L. Y.Hu, X. X.Xu, and H. Y.Fan, Statistical properties of photon-subtracted two-mode squeezed vacuum and its decoherence in thermal environment, J. Opt. Soc. Am. B27(2), 286(2010)
CrossRef
ADS
Google scholar
|
[6] |
L. Y.Huand Z. M.Zhang, Nonclassicality and decoherence of photon-added squeezed thermal state in thermal environment, J. Opt. Soc. Am. B29(4), 529(2012)
CrossRef
ADS
Google scholar
|
[7] |
J. N.Wu, S. Y.Liu, L. Y.Hu, J. H.Huang, Z. L.Duan, and Y. H.Ji, Improving entanglement of even entangled coherent states by a coherent superposition of photon subtraction and addition, J. Opt. Soc. Am. B32(11), 2299(2015)
CrossRef
ADS
Google scholar
|
[8] |
L. Y.Hu, J. N.Wu, Z. Y.Liao, and M. S.Zubairy, Multiphoton catalysis with coherent state input: Nonclassicality and decoherence, J. Phys. B At. Mol. Opt. Phys. 49(17), 175504(2016)
CrossRef
ADS
Google scholar
|
[9] |
A.Ourjoumtsev, A.Dantan, R.Tualle-Brouri, and P.Grangier, Increasing entanglement between Gaussian states by coherent photon subtraction, Phys. Rev. Lett. 98(3), 030502(2007)
CrossRef
ADS
Google scholar
|
[10] |
D. E.Browne, J.Eisert, S.Scheel, and M. B.Plenio, Driving non-Gaussian to Gaussian states with linear optics, Phys. Rev. A67(6), 062320(2003)
CrossRef
ADS
Google scholar
|
[11] |
S. Y.Leeand H.Nha, Quantum state engineering by a coherent superposition of photon subtraction and addition, Phys. Rev. A82(5), 053812(2010)
CrossRef
ADS
Google scholar
|
[12] |
S. Y.Lee, S. W.Ji, H. J.Kim, and H.Nha, Enhancing quantum entanglement for continuous variables by a coherent superposition of photon subtraction and addition, Phys. Rev. A84(1), 012302(2011)
CrossRef
ADS
Google scholar
|
[13] |
G. S.Agarwaland K.Tara, Nonclassical properties of states generated by the excitations on a coherent state, Phys. Rev. A43(1), 492(1991)
CrossRef
ADS
Google scholar
|
[14] |
D.Wang, M.Li, F.Zhu, Z. Q.Yin, W.Chen, Z. F.Han, G. C.Guo, and Q.Wang, Quantum key distribution with the single-photon-added coherent source, Phys. Rev. A90(6), 062315(2014)
CrossRef
ADS
Google scholar
|
[15] |
P.Huang, G. Q.He, J.Fang, and G. H.Zeng, Performance improvement of continuous-variable quantum key distribution via photon subtraction, Phys. Rev. A87(1), 012317(2013)
CrossRef
ADS
Google scholar
|
[16] |
T. J.Bartley, G.Donati, J. B.Spring, X. M.Jin, M.Barbieri, A.Datta, B. J.Smith, andI. A.Walmsley, Multiphoton state engineering by heralded interference between single photons and coherent states, Phys. Rev. A86(4), 043820(2012)
CrossRef
ADS
Google scholar
|
[17] |
C.Navarrete-Benlloch, R.García-Patrón, J. H.Shapiro, and N. J.Cerf, Enhancing quantum entanglement by photon addition and subtraction, Phys. Rev. A86(1), 012328(2012)
CrossRef
ADS
Google scholar
|
[18] |
T. J.Bartley, P. J. D.Crowley, A.Datta, J.Nunn, L.Zhang, and I.Walmsley, Strategies for enhancing quantum entanglement by local photon subtraction, Phys. Rev. A87(2), 022313(2013)
CrossRef
ADS
Google scholar
|
[19] |
L. Y.Hu, F.Jia, and Z. M.Zhang, Entanglement and nonclassicality of photon-added two-mode squeezed thermal state, J. Opt. Soc. Am. B29(6), 1456(2012)
CrossRef
ADS
Google scholar
|
[20] |
J.Fiurášek, Improving entanglement concentration of Gaussian states by local displacements, Phys. Rev. A84(1), 012335(2011)
CrossRef
ADS
Google scholar
|
[21] |
H. L.Zhang, Y. Q.Hu, F.Jia, and L. Y.Hu, Entanglement of photon-subtracted two-mode squeezed thermal state and its decoherence in thermal environments, Int. J. Theor. Phys. 53(6), 2091(2014)
CrossRef
ADS
Google scholar
|
[22] |
Y.Kurochkin, A. S.Prasad, and A. I.Lvovsky, Distillation of the two-mode squeezed state, Phys. Rev. Lett. 112(7), 070402(2014)
CrossRef
ADS
Google scholar
|
[23] |
L. Y.Hu, Z. Y.Liao, and M. S.Zubairy, Continuousvariable entanglement via multiphoton catalysis, Phys. Rev. A95(1), 012310(2017)
CrossRef
ADS
Google scholar
|
[24] |
J.Fiurášek, Conditional generation of N-photon entangled states of light, Phys. Rev. A65(5), 053818(2002)
CrossRef
ADS
Google scholar
|
[25] |
P.Kok, H.Lee, and J. P.Dowling, Creation of large photon-number path entanglement conditioned on photo detection, Phys. Rev. A65(5), 052104(2002)
CrossRef
ADS
Google scholar
|
[26] |
S. Y.Leeand H.Nha, Second-order superposition operations via Hong–Ou–Mandel interference, Phys. Rev. A85(4), 043816(2012)
CrossRef
ADS
Google scholar
|
[27] |
A.Bandyopadhyay, S.Prabhakar, and R. P.Singh, Entanglement of a quantum optical elliptic vortex, Phys. Lett. A375(19), 1926(2011)
CrossRef
ADS
Google scholar
|
[28] |
A.Bandyopadhyayand R. P.Singh, Wigner distribution of elliptical quantum optical vortex, Opt. Commun. 284(1), 256(2011)
CrossRef
ADS
Google scholar
|
[29] |
Y. Z.Li, F.Jia,H. L.Zhang, J. H.Huang, and L. Y.Hu, Hermite polynomial excited squeezed vacuum as quantum optical vortex states, Laser Phys. Lett. 12(11), 115203(2015)
CrossRef
ADS
Google scholar
|
[30] |
H. R.Li, F. L.Li, and S. Y.Zhu,Inseparability of photon-added Gaussian states, Phys. Rev. A75(6), 062318(2007)
CrossRef
ADS
Google scholar
|
[31] |
A.Ourjoumtsev, F.Ferreyrol, R.Tualle-Brouri, and P.Grangier, Preparation of non-local superpositions of quasi-classical light states, Nat. Phys. 5(3), 189(2009)
|
[32] |
A.Ourjoumtsev, A.Dantan, R.Tualle-Brouri, and P.Grangier, Increasing entanglement between Gaussian states by coherent photon subtraction, Phys. Rev. Lett. 98(3), 030502(2007)
CrossRef
ADS
Google scholar
|
[33] |
G. S.Agarwal, M.Graf, M.Orszag, M. O.Scully, and H.Walther, State preparation via quantum coherence and continuous measurement, Phys. Rev. A49(5), 4077(1994)
CrossRef
ADS
Google scholar
|
[34] |
M. S.Scullyand M. S.Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1997
CrossRef
ADS
Google scholar
|
[35] |
S. Y.Liu, Y. Z.Li, L. Y.Hu, J. H.Huang, X. X.Xu, and X. Y.Tao, Nonclassical properties of Hermite polynomial excitation on squeezed vacuum and its decoherence in phase-sensitive reservoirs, Laser Phys. Lett. 12(4), 045201(2015)
CrossRef
ADS
Google scholar
|
[36] |
G.Ren, J. M.Du, H.Yu, and Y. J.Xu, Nonclassical properties of Hermite polynomial’s coherent state, J. Opt. Soc. Am. B29(12), 3412(2012)
CrossRef
ADS
Google scholar
|
[37] |
F.Jia, C. J.Liu, Y. Q.Hu, and H. Y.Fan, New formula for calculating the fidelity of teleportation and its applications, Acta Physica Sinica65, 220302(2016)
|
[38] |
S. L.Braunsteinand H. J.Kimble, Teleportation of continuous quantum variables, Phys. Rev. Lett. 80(4), 869(1998)
CrossRef
ADS
Google scholar
|
[39] |
L.Vaidman, Teleportation of quantum states, Phys. Rev. A49(2), 1473(1994)
CrossRef
ADS
Google scholar
|
[40] |
L. Y.Hu, Z. Y.Liao, S. L.Ma, and M. S.Zubairy, Optimal fidelity of teleportation with continuous variables using three tunable parameters in a realistic environment, Phys. Rev. A93(3), 033807(2016)
CrossRef
ADS
Google scholar
|
[41] |
P.Marianand T. A.Marian, Continuous-variable teleportation in the characteristic-function description, Phys. Rev. A74(4), 042306(2006)
CrossRef
ADS
Google scholar
|
[42] |
H.Jeong, M. S.Kim, and J.Lee, Quantum-information processing for a coherent superposition state via a mixedentangled coherent channel, Phys. Rev. A64(5), 052308(2001)
CrossRef
ADS
Google scholar
|
[43] |
S. J.van Enkand O.Hirota, Entangled coherent states: Teleportation and decoherence, Phys. Rev. A64(2), 022313(2001)
CrossRef
ADS
Google scholar
|
[44] |
S.Wang, L. L.Hou, X. F.Chen, and X. F.Xu, Continuous variable quantum teleportation with non-Gaussian entangled states generated via multiple-photon subtraction and addition, Phys. Rev. A91(6), 063832(2015)
CrossRef
ADS
Google scholar
|
[45] |
K. M.Zheng, S. Y.Liu, H. L.Zhang, C. J.Liu, and L. Y.Hu, A generalized two-mode entangled state: Its generation, properties, and applications, Front. Phys. 9(4), 451(2014)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |