High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials

Andrea Gabrieli , Marco Sant , Saeed Izadi , Parviz Seifpanahi Shabane , Alexey V. Onufriev , Giuseppe B. Suffritti

Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 138203

PDF (802KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 138203 DOI: 10.1007/s11467-017-0693-7
RESEARCH ARTICLE

High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials

Author information +
History +
PDF (802KB)

Abstract

Classical molecular dynamics simulations were performed to study the high-temperature (above 300 K) dynamic behavior of bulk water, specifically the behavior of the diffusion coefficient, hydrogen bond, and nearest-neighbor lifetimes. Two water potentials were compared: the recently proposed “globally optimal” point charge (OPC) model and the well-known TIP4P-Ew model. By considering the Arrhenius plots of the computed inverse diffusion coefficient and rotational relaxation constants, a crossover from Vogel–Fulcher–Tammann behavior to a linear trend with increasing temperature was detected atT*≈309 and T*≈285 K for the OPC and TIP4P-Ew models, respectively. Experimentally, the crossover point was previously observed atT*≈315±5 K. We also verified that for the coefficient of thermal expansion αP (T, P), the isobaric αP(T) curves cross at about the same T* as in the experiment. The lifetimes of water hydrogen bonds and of the nearest neighbors were evaluated and were found to cross nearT*, where the lifetimes are about 1 ps. For T<T*, hydrogen bonds persist longer than nearest neighbors, suggesting that the hydrogen bonding network dominates the water structure at T<T*, whereas for T>T*, water behaves more like a simple liquid. The fact that T* falls within the biologically relevant temperature range is a strong motivation for further analysis of the phenomenon and its possible consequences for biomolecular systems.

Keywords

dynamic crossover / molecular dynamics / bulk liquid water / water models

Cite this article

Download citation ▾
Andrea Gabrieli, Marco Sant, Saeed Izadi, Parviz Seifpanahi Shabane, Alexey V. Onufriev, Giuseppe B. Suffritti. High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials. Front. Phys., 2018, 13(1): 138203 DOI:10.1007/s11467-017-0693-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P.Ball, Water: Water an enduring mystery, Nature452(7185), 291 (2008)

[2]

P.Gallo, K.Amann-Winkel, C. A.Angell , M. A.Anisimov, F.Caupin, C.Chakravarty , E.Lascaris, T.Loerting, A. Z.Panagiotopoulos , J.Russo, J. A.Sellberg, H. E.Stanley , H.Tanaka, C.Vega, L.Xu, and L. G. M.Pettersson, Water: A tale of two liquids, Chem. Rev. 116(13), 7463(2016)

[3]

A.Nilssonand L. G. M. Pettersson, The structural origin of anomalous properties of liquid water, Nat. Commun. 6, 8998(2015)

[4]

H. E.Stanley, Advances in Chemical Physics: Liquid Polymorphism, Vol. 152, John Wiley & Sons, 2013

[5]

J. H.Simpsonand H. Y. Carr, Diffusion and nuclear spin relaxation in water, Phys. Rev.111(5), 1201(1958)

[6]

F.Mallamace, C.Corsaro, and H. E.Stanley , A singular thermodynamically consistent temperature at the origin of the anomalous behavior of liquid water, Sci. Rep.2, 993(2012)

[7]

F.Mallamace, C.Corsaro, D.Mallamace , C.Vasi, and H. E. Stanley, The thermodynamical response functions and the origin of the anomalous behavior of liquid water, Faraday Discuss. 167, 95(2013)

[8]

F.Mallamace, C.Corsaro, D.Mallamace , S.Vasi, C.Vasi, and H. E.Stanley , Thermodynamic properties of bulk and confined water, J. Chem. Phys. 141(18), 18C504(2014)

[9]

H. R.Pruppacher, Self-Diffusion coefficient of supercooled water, J. Chem. Phys. 56(1), 101(1972)

[10]

NIST Chemistry WebBook, 2008.

[11]

F.Mallamace, C.Corsaro, D.Mallamace , S.Vasi, C.Vasi, H. E.Stanley , and S. H.Chen, Some thermodynamical aspects of protein hydration water, J. Chem. Phys. 142(21), 215103(2015)

[12]

R.Speedyand C.Angell, Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at –45 °C, J. Chem. Phys. 65(3), 851(1976)

[13]

P. W.Bridgman, Water, in the liquid and five solid forms, under pressure, in: Proceedings of the American Academy of Arts and Sciences, pp 441–558, JSTOR, 1912

[14]

G. S.Kell, Density, thermal expansivity, and compressibility of liquid water from 0°C to 150°C: Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale, J. Chem. Eng. Data20(1), 97(1975)

[15]

G.Kelland E.Whalley, Reanalysis of the density of liquid water in the range 0–150 °C and 0–1 kbar, J. Chem. Phys. 62(9), 3496(1975)

[16]

C.Sorensen, Densities and partial molar volumes of supercooled aqueous solutions, J. Chem. Phys. 79(3), 1455(1983)

[17]

D.Hareand C.Sorensen, Densities of supercooled H2O and D2O in 25μ glass capillaries, J. Chem. Phys. 84(9), 5085(1986)

[18]

D.Hareand C.Sorensen, The density of supercooled water (II): Bulk samples cooled to the homogeneous nucleation limit, J. Chem. Phys. 87(8), 4840(1987)

[19]

O.Mishima, Volume of supercooled water under pressure and the liquid-liquid critical point, J. Chem. Phys. 133(14), 144503(2010)

[20]

W. D.Wilson, Speed of sound in distilled water as a function of temperature and pressure, J. Acoust. Soc. Am. 31(8), 1067(1959)

[21]

R. C.Doughertyand L. N. Howard, Equilibrium structural model of liquid water: Evidence from heat capacity, spectra, density, and other properties, J. Chem. Phys. 109(17), 7379(1998)

[22]

H.Vogel, The law of the relation between the viscosity of liquids and the temperature, Phys. Z. 22, 645(1921)

[23]

G. S.Fulcher, Analysis of recent measurements of the viscosity of glasses, J. Am. Ceram. Soc. 8(6), 339(1925)

[24]

G.Tammannand W.Hesse, The dependence of viscosity upon the temperature of supercooled liquids, Z. Anorg. Allg. Chem. 156, 245(1926)

[25]

W. S.Price, H.Ide, and Y.Arata , Self-Diffusion of supercooled water to 238 K using PGSE NMR diffusion measurements, J. Phys. Chem. A103(4), 448(1999)

[26]

D.Laageand J. T. Hynes, A molecular jump mechanism of water reorientation, Science311(5762), 832(2006)

[27]

D.Laageand J. T. Hynes, On the molecular mechanism of water reorientation, J. Phys. Chem. B112(45), 14230(2008)

[28]

G.Stirnemannand D.Laage, Direct evidence of angular jumps during water reorientation through twodimensional infrared anisotropy, J. Phys. Chem. Lett. 1(10), 1511(2010)

[29]

D.Laage, G.Stirnemann, F.Sterpone , and J. T.Hynes, Water jump reorientation: from theoretical prediction to experimental observation, Acc. Chem. Res. 45(1), 53(2012)

[30]

D.Laage, G.Stirnemann, F.Sterpone , R.Rey, and J. T. Hynes, Reorientation and allied dynamics in water and aqueous solutions, Annu. Rev. Phys. Chem. 62(1), 395(2011)

[31]

L. B.Skinner, C. J.Benmore, J. C.Neuefeind , and J. B.Parise , The structure of water around the compressibility minimum, J. Chem. Phys. 141(21), 214507(2014)

[32]

D.Schlesinger, K. T.Wikfeldt, L. B.Skinner , C. J.Benmore, A.Nilsson, and L. G. M.Pettersson , The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water, J. Chem. Phys. 145(8), 084503(2016)

[33]

F.Mallamace, C.Corsaro, D.Mallamace , S.Vasi, C.Vasi, and G.Dugo , The role of water in protein’s behavior: The two dynamical crossovers studied by NMR and FTIR techniques, Comput. Struct. Biotechnol. J. 13, 33(2015)

[34]

P.Demontis, J.Gulín-González, M.Masia, M.Sant, and G. B. Suffritti, The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study, J. Chem. Phys. 142(24), 244507(2015)

[35]

H. W.Horn, W. C.Swope, J. W.Pitera , J. D.Madura, T. J.Dick, G. L.Hura, and T. Head-Gordon, Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew, J. Chem. Phys. 120(20), 9665(2004)

[36]

P.Demontis, J.Gulín-González, M.Masia, and G. B.Suffritti , The behaviour of water confined in zeolites: molecular dynamics simulations versus experiment, J. Phys. Condens. Matter22(28), 284106(2010)

[37]

P.Cicu, P.Demontis, S.Spanu , G. B.Suffritti, and A. Tilocca, Electric-field-dependent empirical potentials for molecules and crystals: A first application to flexible water molecule adsorbed in zeolites, J. Chem. Phys. 112(19), 8267(2000)

[38]

S.Izadi, R.Anandakrishnan, and A. V.Onufriev , Building water models: A different approach, J. Phys. Chem. Lett. 5(21), 3863(2014)

[39]

R.Anandakrishnan, C. Baker, S.Izadi , and A. V.Onufriev , Point charges optimally placed to represent the multipole expansion of charge distributions, PLoS ONE8, e67715(2013)

[40]

C.Bergonzoand T. E. III Cheatham, Improved force field parameters lead to a better description of RNA structure, J. Chem. Theory Comput. 11(9), 3969(2015)

[41]

K.Gao, J.Yin, N. M.Henriksen , A. T.Fenley, and M. K. Gilson, Binding enthalpy calculations for a neutral hostguest pair yield widely divergent salt effects across water models, J. Chem. Theory Comput. 11(10), 4555(2015)

[42]

C. N.Nguyen, T.Kurtzman, and M. K.Gilson , Spatial decomposition of translational water-water correlation entropy in binding pockets, J. Chem. Theory Comput. 12(1), 414(2016)

[43]

F.Häseand M.Zacharias, Free energy analysis and mechanism of base pair stacking in nicked DNA, Nucleic Acids Res. 44(15), 7100(2016)

[44]

A.Mukhopadhyay, I. S. Tolokh, and A. V.Onufriev , Accurate evaluation of charge asymmetry in aqueous solvation, J. Phys. Chem. B119(20), 6092(2015)

[45]

J. C.Phillips, R.Braun, W.Wang, J. Gumbart, E.Tajkhorshid , E.Villa, C.Chipot, R. D.Skeel , L.Kale, and K.Schulten, Scalable molecular dynamics with NAMD, J. Comput. Chem. 26(16), 1781(2005)

[46]

I. C.Yehand G.Hummer, System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions, J. Phys. Chem. B108(40), 15873(2004)

[47]

R. G.Gordon, Advances in Magnetic Resonance, Vol. 3, p. 1, New York: Academic Press Inc., 1968

[48]

A. Y.Zasetsky, Dielectric relaxation in liquid water: Two fractions or two dynamics? Phys. Rev. Lett. 107(11), 117601(2011)

[49]

C. J.Fecko, J. J.Loparo, S. T.Roberts , and A.Tokmakoff , Local hydrogen bonding dynamics and collective reorganization in water: Ultrafast infrared spectroscopy of HOD/D2O, J. Chem. Phys. 122(5), 054506(2005)

[50]

J. J.Loparo, S. T.Roberts, and A.Tokmakoff , Multidimensional infrared spectroscopy of water (I): Vibrational dynamics in two-dimensional IR line shapes, J. Chem. Phys. 125(19), 194521(2006)

[51]

J. J.Loparo, S. T.Roberts, and A.Tokmakoff , Multidimensional infrared spectroscopy of water (II): Hydrogen bond switching dynamics, J. Chem. Phys. 125(19), 194522(2006)

[52]

J.Stenger, D.Madsen, P.Hamm , E. T.Nibbering, and T. Elsaesser, A photon echo peak shift study of liquid water, J. Phys. Chem. A106(10), 2341(2002)

[53]

M.Cowan, B. D.Bruner, N.Huse , J.Dwyer, B.Chugh, E.Nibbering , T.Elsaesser, and R.Miller, Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O, Nature434(7030), 199(2005)

[54]

A.Luzarand D.Chandler, Hydrogen-bond kinetics in liquid water, Nature379(6560), 55(1996)

[55]

A.Luzarand D.Chandler, Effect of environment on hydrogen bond dynamics in liquid water, Phys. Rev. Lett. 76(6), 928(1996)

[56]

F. W.Starr, J. K.Nielsen, and H. E.Stanley , Fast and slow dynamics of hydrogen bonds in liquid water, Phys. Rev. Lett. 82(11), 2294(1999)

[57]

F. W.Starr, J. K.Nielsen, and H. E.Stanley , Hydrogenbond dynamics for the extended simple point-charge model of water, Phys. Rev. E62(1), 579(2000)

[58]

A.Luzar, Resolving the hydrogen bond dynamics conundrum, J. Chem. Phys. 113(23), 10663(2000)

[59]

A.Luzar, Extent of inter-hydrogen bond correlations in water: Temperature effect, Chem. Phys. 258(2–3), 267(2000)

[60]

V.Voloshinand Y. I. Naberukhin, Hydrogen bond lifetime distributions in computer simulated water, J. Struct. Chem. 50(1), 78(2009)

[61]

H.Martinianoand N.Galamba, Insights on hydrogenbond lifetimes in liquid and supercooled water, J. Phys. Chem. B117(50), 16188(2013)

[62]

B.Mukherjee, Microscopic origin of temporal heterogeneities in translational dynamics of liquid water, J. Chem. Phys. 143(5), 054503(2015)

[63]

O.Condeand J.Teixeira, Hydrogen bond dynamics in water studied by depolarized Rayleigh scattering, J. Phys. 44(4), 525(1983)

[64]

J.Teixeira, M. C.Bellissent-Funel, S. H.Chen , and A. J.Dianoux , Experimental determination of the nature of diffusive motions of water molecules at low temperatures, Phys. Rev. A31(3), 1913(1985)

[65]

C.Fecko, J.Eaves, J.Loparo, A. Tokmakoff, and P.Geissler , Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water, Science301(5640), 1698(2003)

[66]

D.Laage, Reinterpretation of the liquid water quasielastic neutron scattering spectra based on a nondiffusive jump reorientation mechanism, J. Phys. Chem. B113(9), 2684(2009)

[67]

R.Kumar, J.Schmidt, and J.Skinner , Hydrogen bonding definitions and dynamics in liquid water, J. Chem. Phys.126(20), 204107(2007)

[68]

D.Prada-Gracia, R. Shevchuk, and F.Rao , The quest for self-consistency in hydrogen bond definitions, J. Chem. Phys. 139(8), 084501(2013)

[69]

A.Ozkanlar, T.Zhou, and A. E.Clark , Towards a unified description of the hydrogen bond network of liquid water: A dynamics based approach, J. Chem. Phys. 141(21), 214107(2014)

[70]

P.Wernet, D.Nordlund, U.Bergmann , M.Cavalleri, M.Odelius, H.Ogasawara , L. Å.Näslund , T. K.Hirsch, L.Ojamäe, P.Glatzel , L. G. M.Pettersson, and A. Nilsson, The structure of the first coordination shell in liquid water, Science304(5673), 995(2004)

[71]

R. H.Henchmanand S. J. Irudayam, Topological hydrogen-bond definition to characterize the structure and dynamics of liquid water, J. Phys. Chem. B114(50), 16792(2010)

[72]

J.Jonas, T.DeFries, and D.Wilbur , Molecular motions in compressed liquid water, J. Chem. Phys.65(2), 582(1976)

[73]

J.Ropp, C.Lawrence, T.Farrar , and J.Skinner, Rotational motion in liquid water is anisotropic: a nuclear magnetic resonance and molecular dynamics simulation study, J. Am. Chem. Soc. 123(33), 8047(2001)

[74]

E. H.Hardy, A.Zygar, M. D.Zeidler , M.Holz, and F. D. Sacher, Isotope effect on the translational and rotational motion in liquid water and ammonia,J. Chem. Phys. 114(7), 3174(2001)

[75]

R.Ludwig, F.Weinhold, and T. C.Farrar , Experimental and theoretical determination of the temperature dependence of deuteron and oxygen quadrupole coupling constants of liquid water, J. Chem. Phys. 103(16), 6941(1995)

[76]

J. A.Sellberg, C.Huang, T. A.McQueen , N. D.Loh, H.Laksmono, et al., Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature, Nature510(7505), 381(2014)

[77]

C.Angelland F.Franks, Water: A Comprehensive Treatise, Vol. 7, New York: Plenum, 1982

[78]

H. E.Stanleyand O.Mishima, The relationship between liquid, supercooled and glassy water, Nature396(6709), 329(1998)

[79]

L.Liu, S. H.Chen, A.Faraone, C. W. Yen, and C. Y.Mou , Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water, Phys. Rev. Lett. 95(11), 117802(2005)

[80]

S. V.Lishchuk, N. P.Malomuzh, and P. V.Makhlaichuk , Why thermodynamic properties of normal and heavy water are similar to those of argon-like liquids? Phys. Lett. A374(19–20), 2084(2010)

[81]

A.Fisenko, N.Malomuzh, and A.Oleynik , To what extent are thermodynamic properties of water argonlike? Chem. Phys. Lett. 450(4–6), 297(2008)

[82]

S.Izadi, B.Aguilar, and A. V.Onufriev , Proteinligand electrostatic binding free energies from explicit and implicit solvation, J. Chem. Theory Comput. 11(9), 4450(2015)

[83]

D.Nayarand C.Chakravarty, Sensitivity of local hydration behaviour and conformational preferences of peptides to choice of water model, Phys. Chem. Chem. Phys. 16(21), 10199(2014)

[84]

R. B.Bestand J.Mittal, Protein simulations with an optimized water model: Cooperative helix formation and temperature-induced unfolded state collapse, J. Phys. Chem. B114(46), 14916(2010)

[85]

R. B.Bestand J.Mittal, Free-energy landscape of the gb1 hairpin in all-atom explicit solvent simulations with different force fields: Similarities and differences, Proteins79(4), 1318(2011)

[86]

P.Florová, P. Sklenovský, P.Banáš, and M.Otyepka , Explicit water models affect the specific solvation and dynamics of unfolded peptides while the conformational behavior and flexibility of folded peptides remain intact, J. Chem. Theory Comput. 6(11), 3569(2010)

[87]

H. E.Stanley, S. V.Buldyrev, G.Franzese , N.Giovambattista, and F. W. Starr, Static and dynamic heterogeneities in water, Philosophical Transactions of the Royal Society of London A363(1827), 509(2005)

[88]

A.Nilssonand L.Pettersson, Perspective on the structure of liquid water, Chem. Phys. 389(1–3), 1 (2011)

[89]

D.Prada-Gracia, R. Shevchuk, P.Hamm , and F.Rao, Towards a microscopic description of the free-energy landscape of water, J. Chem. Phys. 137(14), 144504(2012)

[90]

G. C.Picasso, D. C.Malaspina, M. A.Carignano , and I.Szleifer, Cooperative dynamic and diffusion behavior above and below the dynamical crossover of supercooled water, J. Chem. Phys. 139(4), 044509(2013)

[91]

J. A.Sellberg, S.Kaya, V. H.Segtnan , C.Chen, T.Tyliszczak, H.Ogasawara , D.Nordlund, L. G. M. Pettersson, and A.Nilsson,Comparison of X-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section, J. Chem. Phys. 141(3), 034507(2014)

[92]

E.Duboué-Dijon and D.Laage, Characterization of the local structure in liquid water by various order parameters, J. Phys. Chem. B119(26), 8406(2015)

[93]

R. S.Singh, J. W.Biddle, P. G.Debenedetti , and M. A.Anisimov , Two-state thermodynamics and the possibility of a liquid-liquid phase transition in supercooled TIP4P/2005 water, J. Chem. Phys. 144(14), 144504(2016)

[94]

Y.Xu, N. G.Petrik, R. S.Smith , B. D.Kay, and G. A. Kimmel, Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K, Proc. Natl. Acad. Sci. USA113(52), 14921(2016)

[95]

K. A.Jackson, Kinetic Processes: Crystal Growth, Diffusion, and Phase Transitions in Materials, Wiley-VCH Verlag GmbH & Co. KGaA, 2005

[96]

W. L.Jorgensen, J. Chandrasekhar, J. D.Madura, R. W.Impey , and M. L.Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79(2), 926(1983)

[97]

J. L. F.Abascaland C. Vega, A general purpose model for the condensed phases of water: TIP4P/2005, J. Chem. Phys. 123(23), 234505(2005)

[98]

M. D.Marzio, G.Camisasca, M.Rovere , and P.Gallo, Fragile-to-strong crossover in supercooled water: A comparison between TIP4P and TIP4P/2005 models, Nuovo Cim. 39(C), 302(2016)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (802KB)

893

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/