Crystal growth and electrical transport properties of niobium and tantalum monopnictide and dipnictide semimetals

Hong Lu, Shuang Jia

PDF(2437 KB)
PDF(2437 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (3) : 127211. DOI: 10.1007/s11467-017-0692-8
REVIEW ARTICLE
REVIEW ARTICLE

Crystal growth and electrical transport properties of niobium and tantalum monopnictide and dipnictide semimetals

Author information +
History +

Abstract

The discovery of the first Weyl semimetal tantalum monoarsenide has greatly promoted physical research on the niobium and tantalum pnictide compounds. Crystallizing into the NbAs- and OsGe2-type structures, these mono- and di-pnictide semimetals manifest exotic electrical transport properties in magnetic field, which only occur in their single-crystalline forms. All the unusual electrical properties correspond to their poor carriers, which are indeed vulnerable to various crystal defects. In this review article, we present a comprehensive comparison of the crystal growth and electrical transport properties of the two semimetal families. We then discuss in detail the possible characteristic transport features, such as the chiral anomaly of Weyl quasiparticles. We emphasize the importance of crystal growth and sample manipulation for exploring the unique topological properties of Weyl semimetals in the future.

Keywords

Weyl semimtal / crystal growth / electrical transport

Cite this article

Download citation ▾
Hong Lu, Shuang Jia. Crystal growth and electrical transport properties of niobium and tantalum monopnictide and dipnictide semimetals. Front. Phys., 2017, 12(3): 127211 https://doi.org/10.1007/s11467-017-0692-8

References

[1]
D.Johrendt, C.Hieke, and T.Stürzer, 2.05- transitionmetal pnictides, in: Comprehensive Inorganic Chemistry {II} (Second Edition), edited by Jan ReedijkKenneth Poeppelmeier, Amsterdam: Elsevier, 2013, pp. 111–135
[2]
N.Schönberg, W. G.Overend, A.Munthe-Kaas, and N. A.Sörensen, An X-ray investigation of transition metal phosphides, Acta Chem. Scand. 8, 226 (1954)
CrossRef ADS Google scholar
[3]
H.Boller and E.Parthé, The transposition structure of NbAs and of similar monophosphides and arsenides of niobium and tantalum, Acta Crystallogr. 16(11), 1095 (1963)
CrossRef ADS Google scholar
[4]
S.Furuseth and A.Kjekshus, The crystal structure of NbAs (comments), Acta Crystallogr.17(8), 1077 (1964)
CrossRef ADS Google scholar
[5]
S.Furuseth, A.Kjekshus, S.Åsen, H.Halvarson, and L.Nilsson, 0, On the arsenides and antimonides of niobium, Acta Chem. Scand.18, 1180 (1964)
CrossRef ADS Google scholar
[6]
S.Furuseth, K.Selte, A.Kjekshus, S.Gronowitz, R. A.Hoffman, and A.Westerdahl, On the arsenides and antimonides of tantalum, Acta Chem. Scand.19, 95 (1965)
CrossRef ADS Google scholar
[7]
J. J.Murray, J. B.Taylor, L. D.Calvert, Y.Wang, E. J.Gabe, and J. G.Despault, Phase relationships and thermodynamics of refractory metal pnictides: The metal-rich tantalum arsenides, J. Less Common Met.46(2), 311 (1976)
CrossRef ADS Google scholar
[8]
S.-M.Huang,S.-Y.Xu, I.Belopolski, C.-C.Lee, G.Chang, B. K.Wang, N.Alidoust, G.Bian, M.Neupane, C.Zhang, S.Jia, A.Bansil, H.Lin, and M. Z.Hasan, A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class, Nat. Commun.6, 7373 (2015)
CrossRef ADS Google scholar
[9]
H.Weng, C.Fang, Z.Fang, B. A.Bernevig, and X.Dai, Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides, Phys. Rev. X5(1), 011029 (2015)
CrossRef ADS Google scholar
[10]
F.Hulliger, New representatives of the NbAs2 and ZrAs2 structures, Nature204(4960), 775 (1964)
CrossRef ADS Google scholar
[11]
W.Bensch and W.Heid, NbAs2, Acta Crystallogr. C51(11), 2205 (1995)
CrossRef ADS Google scholar
[12]
G. S.Saini, L. D.Calvert, and J. B.Taylor, Preparation and characterization of crystals of MX- and MX2- type arsenides of niobium and tantalum, Can. J. Chem.42(3), 630 (1964)
CrossRef ADS Google scholar
[13]
R.Nesper, The Zintl–Klemm concept — A historical survey, Zeitschrift für anorganische und allgemeine Chemie640, 2639 (2014)
CrossRef ADS Google scholar
[14]
P.Alemany and S.Alvarez, Theoretical study of bonding and electrical conductivity in compounds with the NbAs2 structure,Inorg. Chem.31(14), 3007 (1992)
CrossRef ADS Google scholar
[15]
J.Xu, M.Greenblatt, T.Emge, P.Hohn, T.Hughbanks, and Y.Tian, Crystal structure, electrical transport, and magnetic properties of niobium monophosphide, Inorg. Chem.35(4), 845 (1996)
CrossRef ADS Google scholar
[16]
B.Saparov, J. E.Mitchell, and A. S.Sefat, Properties of binary transition-metal arsenides (TAs), Supercond. Sci. Technol.25(8), 084016 (2012)
CrossRef ADS Google scholar
[17]
F.Failamani, P.Broz, D.Macciò, S.Puchegger, H.Müller, L.Salamakha, H.Michor, A.Grytsiv, A.Saccone, E.Bauer, G.Giester, and P.Rogl, Constitution of the systems {V, Nb, Ta}Sb and physical properties of di-antimonides {V, Nb, Ta}Sb2, Intermetallics65, 94 (2015)
CrossRef ADS Google scholar
[18]
S. Y.Xu, I.Belopolski, N.Alidoust, M.Neupane, G.Bian, C.Zhang, R.Sankar, G.Chang, Z.Yuan, C. C.Lee, S.M.Huang, H.Zheng, J.Ma, D. S.Sanchez, B.Wang, A.Bansil, F.Chou, P. P.Shibayev, H.Lin, S.Jia, and M. Z.Hasan, Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science349(6248), 613 (2015)
CrossRef ADS Google scholar
[19]
B. Q.Lv, H. M.Weng, B. B.Fu, X. P.Wang, H.Miao, J.Ma, P.Richard, X. C.Huang, L. X.Zhao, G. F.Chen, Z.Fang, X.Dai, T.Qian, and H.Ding, Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X5(3), 031013 (2015)
CrossRef ADS Google scholar
[20]
L. X.Yang, Z. K.Liu, Y.Sun, H.Peng, H. F.Yang, T.Zhang, B.Zhou, Y.Zhang, Y. F.Guo, M.Rahn, D.Prabhakaran, Z.Hussain, S. K.Mo, C.Felser, B.Yan, and Y. L.Chen, Weyl semimetal phase in the noncentrosymmetric compound TaAs, Nat. Phys.11(9), 728 (2015)
[21]
S. Y.Xu, N.Alidoust, I.Belopolski, Z.Yuan, G.Bian, T. R.Chang, H.Zheng, V. N.Strocov, D. S.Sanchez, G.Chang, C.Zhang, D.Mou, Y.Wu, L.Huang, C. C.Lee, S. M.Huang, B. K.Wang, A.Bansil, H. T.Jeng, T.Neupert, A.Kaminski, H.Lin, S.Jia, and M. Z.Hasan, Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide, Nat. Phys.11(9), 748 (2015)
[22]
N.Xu, H. M.Weng, B. Q.Lv, C. E.Matt, J.Park, F.Bisti, V. N.Strocov, D.Gawryluk, E.Pomjakushina, K.Conder, N. C.Plumb, M.Radovic, G.Autès, O. V.Yazyev, Z.Fang, X.Dai, T.Qian, J.Mesot, H.Ding, and M.Shi, Observation of Weyl nodes and Fermi arcs in tantalum phosphide, Nat. Commun.7, 11006 (2016)
CrossRef ADS Google scholar
[23]
S. Y.Xu, I.Belopolski, D. S.Sanchez, C.Zhang, G.Chang, C.Guo, G.Bian, Z.Yuan, H.Lu, T.-R.Chang, P. P.Shibayev, M. L.Prokopovych, N.Alidoust, H.Zheng, C.-C.Lee, S.-M.Huang, R.Sankar, F.Chou, C.-H.Hsu, H.-T.Jeng, A.Bansil, T.Neupert, V. N.Strocov, H.Lin, S.Jia, and M. Z.Hasan, Experimental discovery of a topological Weyl semimetal state in TaP, Sci. Adv.1(10), e1501092 (2015)
CrossRef ADS Google scholar
[24]
C. L.Zhang, Z. J.Yuan, Q. D.Jiang, Z.Lin, B. B.Tong, X. X.Zhang, C.Xie, and S.Jia, Electron scattering in tantalum monoarsenide, Phys. Rev. B95(8), 085202 (2017)
CrossRef ADS Google scholar
[25]
C.Shekhar, A. K.Nayak, Y.Sun, M.Schmidt, M.Nicklas, I.Leermakers, U.Zeitler, Y.Skourski, J.Wosnitza, Z.Liu, Y.Chen, W.Schnelle,H.Borrmann, Y.Grin, C.Felser, and B.Yan, Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP, Nat. Phys.10, 1038 (2015)
[26]
X.Huang, L.Zhao, Y.Long, P.Wang, D.Chen, Z.Yang, H.Liang, M.Xue, H.Weng, Z.Fang, X.Dai, and G.Chen, Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs, Phys. Rev. X5(3), 031023 (2015)
CrossRef ADS Google scholar
[27]
C. L.Zhang, S. Y.Xu, I.Belopolski, Z.Yuan, Z.Lin, B.Tong, G.Bian, N.Alidoust, C. C.Lee, S. M.Huang, T. R.Chang, G.Chang, C. H.Hsu, H. T.Jeng, M.Neupane, D. S.Sanchez, H.Zheng, J.Wang, H.Lin, C.Zhang, H. Z.Lu, S. Q.Shen, T.Neupert, M. Z.Hasan, and S.Jia, Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal, Nat. Commun. 7, 10735 (2016)
CrossRef ADS Google scholar
[28]
H.Zheng, S.-Y.Xu, G.Bian, C.Guo, G.Chang, D. S.Sanchez, I.Belopolski, C.-C.Lee, S.-M.Huang, X.Zhang, R.Sankar, N.Alidoust, T.-R.Chang, F.Wu, T.Neupert, F.Chou, H.-T.Jeng, N.Yao, A.Bansil, S.Jia, H.Lin, and M. Z.Hasan, Atomic-scale visualization of quantum interference on a Weyl semimetal surface by Scanning Tunneling Microscopy, ACS Nano10, 1378 (2016)
CrossRef ADS Google scholar
[29]
R.Batabyal, N.Morali, N.Avraham, Y.Sun, M.Schmidt, C.Felser, A.Stern, B.Yan, and H.Beidenkopf, Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions, Sci. Adv.2(8), e1600709 (2016)
CrossRef ADS Google scholar
[30]
H.Inoue, A.Gyenis, Z.Wang, J.Li, S. W.Oh, S.Jiang, N.Ni, B. A.Bernevig, and A.Yazdani, Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal, Science351(6278), 1184 (2016)
CrossRef ADS Google scholar
[31]
S.Jia, S. Y.Xu, and M. Z.Hasan, Weyl semimetals, Fermi arcs and chiral anomalies, Nat. Mater.15(11), 1140 (2016)
CrossRef ADS Google scholar
[32]
K.Wang, D.Graf, L.Li, L.Wang, and C.Petrovic, Anisotropic giant magnetoresistance in NbSb2, Sci. Rep.4, 7328 (2014)
CrossRef ADS Google scholar
[33]
D.Wu, J.Liao, W.Yi, X.Wang, P.Li, H.Weng, Y.Shi, Y.Li, J.Luo, X.Dai, and Z.Fang, Giant semiclassical magnetoresistance in high mobility TaAs2 semimetal, Appl. Phys. Lett.108, 042105 (2016)
CrossRef ADS Google scholar
[34]
B.Shen, X.Deng, G.Kotliar, and N.Ni, Fermi surface topology and negative longitudinal magnetoresistance observed in the semimetal NbAs2, Phys. Rev. B93(19), 195119 (2016)
CrossRef ADS Google scholar
[35]
Z.Yuan, H.Lu, Y.Liu, J.Wang, and S.Jia, Large magnetoresistance in compensated semimetals TaAs2 and NbAs2, Phys. Rev. B93(18), 184405 (2016)
CrossRef ADS Google scholar
[36]
Y.Li, L.Li, J.Wang, T.Wang, X.Xu, C.Xi, C.Cao, and J.Dai, Resistivity plateau and negative magnetoresistance in the topological semimetal TaSb2, Phys. Rev. B94(12), 121115 (2016)
CrossRef ADS Google scholar
[37]
Y.Sun, S. C.Wu, and B.Yan, Topological surface states and Fermi arcs of the noncentrosymmetric Weyl semimetals TaAs, TaP, NbAs, and NbP, Phys. Rev. B92(11), 115428 (2015)
CrossRef ADS Google scholar
[38]
M. Z.Hasan and C. L.Kane, Topological insulators, Rev. Mod. Phys.82(4), 3045 (2010)
CrossRef ADS Google scholar
[39]
Z.Wang, Y.Sun, X. Q.Chen, C.Franchini, G.Xu, H.Weng, X.Dai, and Z.Fang, Dirac semimetal and topological phase transitions in A3Bi (A= Na, K, Rb), Phys. Rev. B85(19), 195320 (2012)
CrossRef ADS Google scholar
[40]
Z.Wang, H.Weng, Q.Wu, X.Dai, and Z.Fang, Threedimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B88(12), 125427 (2013)
CrossRef ADS Google scholar
[41]
X.Wan, A. M.Turner, A.Vishwanath, and S. Y.Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B83(20), 205101 (2011)
CrossRef ADS Google scholar
[42]
G.Xu, H.Weng, Z.Wang, X.Dai, and Z.Fang, Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4, Phys. Rev. Lett.107(18), 186806 (2011)
CrossRef ADS Google scholar
[43]
P.Hosur and X.Qi, Recent developments in transport phenomena in Weyl semimetals, C. R. Phys.14(9–10), 857 (2013)
CrossRef ADS Google scholar
[44]
J. J.Murray, J. B.Taylor, and L.Usner, Halogen transport of molybdenum arsenides and other transition metal pnictides, J. Cryst. Growth15(3), 231 (1972)
CrossRef ADS Google scholar
[45]
J.Hu, J. Y.Liu, D.Graf, S. M. A.Radmanesh, D. J.Adams, A.Chuang, Y.Wang, I.Chiorescu, J.Wei, L.Spinu, and Z. Q.Mao, Berry phase and Zeeman splitting of Weyl semimetal TaP, Sci. Rep.6(1), 18674 (2016)
CrossRef ADS Google scholar
[46]
C.Zhang, C.Guo, H.Lu, X.Zhang, Z.Yuan, Z.Lin, J.Wang, and S.Jia, Large magnetoresistance over an extended temperature regime in monophosphides of tantalum and niobium, Phys. Rev. B92(4), 041203 (2015)
CrossRef ADS Google scholar
[47]
F.Arnold, C.Shekhar, S. C.Wu, Y.Sun, R. D.dos Reis, N.Kumar, M.Naumann, M. O.Ajeesh, M.Schmidt, A. G.Grushin, J. H.Bardarson, M.Baenitz, D.Sokolov, H.Borrmann, M.Nicklas, C.Felser, E.Hassinger, and B.Yan, Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP, Nat. Commun.7, 11615 (2016)
CrossRef ADS Google scholar
[48]
Z.Li, H.Chen, S.Jin, D.Gan, W.Wang, L.Guo, and X.Chen, Weyl semimetal TaAs: Crystal growth, morphology, and thermodynamics, Cryst. Growth Des.16(3), 1172 (2016)
CrossRef ADS Google scholar
[49]
P.Schmidt, M.Binnewies, R.Glaum, and M.Schmidt, Chemical vapor transport reactions-methods, materials, modeling, in: Advanced Topics on crystal growth, In-Tech,2013, Chap. 9
CrossRef ADS Google scholar
[50]
P. C.Canfield and ZFisk, Growth of single crystals from metallic fluxes, Philos. Mag. B65(6), 1117 (1992)
CrossRef ADS Google scholar
[51]
J.Zhang, F. L.Liu, J. K.Dong, X.Yang, N. N.Li, W. G.Yang, and S. Y.Li, Structural and transport properties of the Weyl semimetal NbAs at high pressure, Chin. Phys. Lett.32(9), 097102 (2015)
CrossRef ADS Google scholar
[52]
T.Besara, D. A.Rhodes, K. W.Chen, S.Das, Q. R.Zhang, J.Sun, B.Zeng, Y.Xin, L.Balicas, R. E.Baumbach, E.Manousakis, D. J.Singh, and T.Siegrist, Coexistence of Weyl physics and planar defects in the semimetals TaP and TaAs, Phys. Rev. B93(24), 245152 (2016)
CrossRef ADS Google scholar
[53]
J. O.Willerstrom, Stacking disorder in NbP, TaP, NbAs, and TaAs, J. Less Common Met.99(2), 273 (1984)
CrossRef ADS Google scholar
[54]
C. C.Lee, S. Y.Xu, S. M.Huang, D. S.Sanchez, I.Belopolski, G.Chang, G.Bian, N.Alidoust, H.Zheng, M.Neupane, B.Wang, A.Bansil, M. Z.Hasan, and H.Lin, Fermi surface interconnectivity and topology in Weyl fermion semimetals TaAs, TaP, NbAs, and NbP, Phys. Rev. B92(23), 235104 (2015)
CrossRef ADS Google scholar
[55]
Z. K.Liu, L. X.Yang, Y.Sun, T.Zhang, H.Peng, H. F.Yang, C.Chen, Y.Zhang, Y. F.Guo, D.Prabhakaran, M.Schmidt, Z.Hussain, S. K.Mo, C.Felser, B.Yan, and Y. L.Chen, Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family, Nat. Mater.15(1), 27 (2016)
CrossRef ADS Google scholar
[56]
C.Xu, J.Chen, G. X.Zhi, Y.Li, J.Dai, and C.Cao, Electronic structures of transition metal dipnictides XPn2 (X= Ta, Nb; Pn= P, As, Sb), Phys. Rev. B93(19), 195106 (2016)
CrossRef ADS Google scholar
[57]
Y.Luo, R. D.McDonald, P. F. S.Rosa, B.Scott, N.Wakeham, N. J.Ghimire, E. D.Bauer, J. D.Thompson, and F.Ronning, Anomalous electronic structure and magnetoresistance in TaAs2, Sci. Rep.6(1), 27294 (2016)
CrossRef ADS Google scholar
[58]
J.Klotz, S. C.Wu, C.Shekhar, Y.Sun, M.Schmidt, M.Nicklas, M.Baenitz, M.Uhlarz, J.Wosnitza, C.Felser, and B.Yan, Quantum oscillations and the Fermi surface topology of the Weyl semimetal NbP, Phys. Rev. B93(12), 121105 (2016)
CrossRef ADS Google scholar
[59]
Z.Wang, Y.Zheng, Z.Shen, Y.Lu, H.Fang, F.Sheng, Y.Zhou, X.Yang, Y.Li, C.Feng, and Z.-A.Xu, Helicity-protected ultrahigh mobility Weyl fermions in NbP, Phys. Rev. B93, 121112 (2016)
CrossRef ADS Google scholar
[60]
J.Du, H.Wang, Q.Mao, R.Khan, B.Xu, Y.Zhou, Y.Zhang, J.Yang, B.Chen, C.Feng, and M.Fang, Large Unsaturated positive and negative magnetoresistance in Weyl Semimetal TaP, Sci. China Phys. Mech. Astron.59(5), 657406 (2015)
CrossRef ADS Google scholar
[61]
N. J.Ghimire, Y.Luo, M.Neupane, D. J.Williams, E. D.Bauer, and F.Ronning, Magnetotransport of single crystalline NbAs, J. Phys.: Condens. Matter27(15), 152201 (2015)
CrossRef ADS Google scholar
[62]
Y.Luo, N. J.Ghimire, M.Wartenbe, H.Choi, M.Neupane, R. D.McDonald, E. D.Bauer, J.Zhu, J. D.Thompson, and F.Ronning, Electron-hole compensation effect between topologically trivial electrons and nontrivial holes in NbAs, Phys. Rev. B92, 205134 (2015)
CrossRef ADS Google scholar
[63]
X.Yang, Y.Liu, Z.Wang, Y.Zheng, and Z.Xu, Chiral anomaly induced negative magnetoresistance in topological Weyl semimetal NbAs, arXiv: 1506.03190 (2015)
[64]
C.Zhang, Z.Lin, C.Guo, S. Y.Xu, C. C.Lee, H.Lu, S. M.Huang, G.Chang, C. H.Hsu, H.Lin, L.Li, C.Zhang, T.Neupert, M.Zahid Hasan, J.Wang, and S.Jia, Quantum phase transitions in Weyl semimetal tantalum monophosphide, arXiv: 1507.06301 (2015)
[65]
C. M.Hurd, in: The Hall Effect in Metals and Alloys, New York: Cambridge University Press, 1972
CrossRef ADS Google scholar
[66]
Y. Y.Wang, Q. H.Yu, P. J.Guo, K.Liu, and T. L.Xia, Resistivity plateau and extremely large magnetoresistance in NbAs2 and TaAs2, Phys. Rev. B94(4), 041103 (2016)
CrossRef ADS Google scholar
[67]
M. N.Ali, J.Xiong, S.Flynn, J.Tao, Q. D.Gibson, L. M.Schoop, T.Liang, N.Haldolaarachchige, M.Hirschberger, N. P.Ong, and R. J.Cava, Large, nonsaturating magnetoresistance in WTe2, Nature514, 205 (2014)
[68]
D.Shoenberg, Magnetic Oscillations in Metals, Cambridge University Press, 2009
[69]
G. P.Mikitik and Yu. V.Sharlai, Manifestation of Berry’s phase in metal physics, Phys. Rev. Lett.82(10), 2147 (1999)
CrossRef ADS Google scholar
[70]
G. P.Mikitik and Yu. V.Sharlai, Berry phase and de Haas-van Alphen effect in LaRhIn5, Phys. Rev. Lett.93(10), 106403 (2004)
CrossRef ADS Google scholar
[71]
G. P.Mikitik and Yu. V.Sharlai, Berry phase and the phase of the Shubnikov-de Haas oscillations in threedimensional topological insulators, Phys. Rev. B85(3), 033301 (2012)
CrossRef ADS Google scholar
[72]
H.Murakawa, M. S.Bahramy, M.Tokunaga, Y.Kohama, C.Bell, Y.Kaneko, N.Nagaosa, H. Y.Hwang, and Y.Tokura, Detection of Berry’s phase in a bulk Rashba semiconductor, Science342(6165), 1490 (2013)
CrossRef ADS Google scholar
[73]
F.Arnold, M.Naumann, S. C.Wu, Y.Sun, M.Schmidt, H.Borrmann, C.Felser, B.Yan, and E.Hassinger, Chiral Weyl pockets and Fermi surface topology of the Weyl semimetal TaAs, Phys. Rev. Lett.117(14), 146401 (2016)
CrossRef ADS Google scholar
[74]
C. M.Wang, H. Z.Lu, and S. Q.Shen, Anomalous phase shift of quantum oscillations in 3D topological semimetals, Phys. Rev. Lett.117(7), 077201 (2016)
CrossRef ADS Google scholar
[75]
P. J. W.Moll, A. C.Potter, N. L.Nair, B. J.Ramshaw, K. A.Modic, S.Riggs, B.Zeng, N. J.Ghimire, E. D.Bauer, R.Kealhofer, F.Ronning, and J. G.Analytis, Magnetic torque anomaly in the quantum limit of Weyl semimetals, Nat. Commun.7, 12492 (2016)
CrossRef ADS Google scholar
[76]
S. L.Adler, Axial-vector vertex in spinor electrodynamics, Phys. Rev.177(5), 2426 (1969)
CrossRef ADS Google scholar
[77]
J. S.Bell and R.Jackiw, A PCAC puzzle: π0→γγ in the σ-model, Nuovo Cim., A60(1), 47 (1969)
CrossRef ADS Google scholar
[78]
H. B.Nielsen and M.Ninomiya, The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal, Phys. Lett. B130(6), 389 (1983)
CrossRef ADS Google scholar
[79]
X. T.Xu and S.Jia, Recent observations of negative longitudinal magnetoresistance in semimetal, Chin. Phys. B25(11), 117204 (2016)
CrossRef ADS Google scholar
[80]
C. Z.Chen, H.Liu, H.Jiang, and X. C.Xie, Positive magnetoconductivity of Weyl semimetals in the ultraquantum limit, Phys. Rev. B93(16), 165420 (2016)
CrossRef ADS Google scholar
[81]
D. T.Son and B. Z.Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metals, Phys. Rev. B88(10), 104412 (2013)
CrossRef ADS Google scholar
[82]
R. D.dos Reis, S. C.Wu, Y.Sun, M. O.Ajeesh, C.Shekhar, M.Schmidt, C.Felser, B.Yan, and M.Nicklas, Pressure tuning the Fermi surface topology of the Weyl semimetal NbP, Phys. Rev. B93(20), 205102 (2016)
CrossRef ADS Google scholar
[83]
Y.Luo, N. J.Ghimire, E. D.Bauer, J. D.Thompson, and F.Ronning, “Hard” crystalline lattice in the Weyl semimetal NbAs, J. Phys.: Condens. Matter28(5), 055502 (2016)
CrossRef ADS Google scholar
[84]
Y.Zhou, P.Lu, Y.Du, X.Zhu, G.Zhang, R.Zhang, D.Shao, X.Chen, X.Wang, M.Tian, J.Sun, X.Wan, Z.Yang, W.Yang, Y.Zhang, and D.Xing, Pressureinduced new topological Weyl semimetal phase in TaAs, Phys. Rev. Lett.117(14), 146402 (2016)
CrossRef ADS Google scholar
[85]
H.Wang, H.Wang, Y.Chen, J.Luo, Z.Yuan, J.Liu, Y.Wang, S.Jia, X. J.Liu, J.Wei, and J.Wang, Reply to Comment on Tip induced unconventional superconductivity on Weyl semimetal TaAs, arXiv: 1607.02886 (2016)
[86]
Y.Li, Y.Zhou, Z.Guo, X.Chen, P.Lu, X.Wang, C.An, Y.Zhou, J.Xing, G.Du, X.Zhu,H.Yang, J.Sun, Z.Yang, Y.Zhang, and H. H.Wen, Superconductivity induced by high pressure in Weyl semimetal TaP, arXiv: 1611.02548 [cond-mat.suprcon] (2016)
[87]
C. L.Zhang, B.Tong, Z.Yuan, Z.Lin, J.Wang, J.Zhang, C. Y.Xi, Z.Wang, S.Jia, and C.Zhang, Signature of chiral fermion instability in the Weyl semimetal TaAs above the quantum limit, Phys. Rev. B94(20), 205120 (2016)
CrossRef ADS Google scholar
[88]
Z.Zhu, X.Lin, J.Liu, B.Fauque, Q.Tao, C.Yang, Y.Shi, and K.Behnia, Quantum oscillations, thermoelectric coefficients, and the Fermi surface of semimetallic WTe2, Phys. Rev. Lett.114(17), 176601 (2015)
CrossRef ADS Google scholar
[89]
T.Liang, Q.Gibson, M. N.Ali, M.Liu, R. J.Cava, and N. P.Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2, Nat. Mater.14(3), 280 (2014)
CrossRef ADS Google scholar
[90]
E.Mun, H.Ko, G. J.Miller, G. D.Samolyuk, S. L.Bud’ko, and P. C.Canfield, Magnetic field effects on transport properties of PtSn4, Phys. Rev. B85(3), 035135 (2012)
CrossRef ADS Google scholar
[91]
H.Takatsu, J. J.Ishikawa, S.Yonezawa, H.Yoshino, T.Shishidou, T.Oguchi, K.Murata, and Y.Maeno, Extremely large magnetoresistance in the nonmagnetic metal PdCoO2, Phys. Rev. Lett.111(5), 056601 (2013)
CrossRef ADS Google scholar
[92]
P. B.Alers and R. T.Webber, The magnetoresistance of bismuth crystals at low temperatures, Phys. Rev.91(5), 1060 (1953)
CrossRef ADS Google scholar
[93]
A. A.Abrikosov, Quantum magnetoresistance, Phys. Rev. B58(5), 2788 (1998)
CrossRef ADS Google scholar
[94]
A. A.Abrikosov, Quantum linear magnetoresistance, Europhys. Lett.49(6), 789 (2000)
CrossRef ADS Google scholar
[95]
M. M.Parish and P. B.Littlewood, Non-saturating magnetoresistance in heavily disordered semiconductors, Nature426(6963), 162 (2003)
CrossRef ADS Google scholar
[96]
Y.Pan, H.Wang, P.Lu, J.Sun, B.Wang, and D. Y.Xing, The large unsaturated magnetoresistance of Weyl semimetals, arXiv: 1509.03975 [cond-mat.meshall] (2015)
[97]
Q. D.Jiang, H.Jiang, H.Liu, Q. F.Sun, and X. C.Xie, Chiral wave-packet scattering in Weyl semimetals, Phys. Rev. B93(19), 195165 (2016)
CrossRef ADS Google scholar
[98]
P. N.Argyres and E. N.Adams, Longitudinal magnetoresistance in the quantum limit, Phys. Rev. 104, 900 (1956)
CrossRef ADS Google scholar
[99]
H. Z.Lu, S. B.Zhang, and S. Q.Shen, High-field magnetoconductivity of topological semimetals with shortrange potential, Phys. Rev. B92(4), 045203 (2015)
CrossRef ADS Google scholar
[100]
S. A.Parameswaran, T.Grover, D. A.Abanin, D. A.Pesin, and A.Vishwanath, Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals, Phys. Rev. X4(3), 031035 (2014)
CrossRef ADS Google scholar
[101]
A. C.Potter, I.Kimchi, and A.Vishwanath, Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals, Nat. Commun. 5, 5161 (2014)
CrossRef ADS Google scholar
[102]
P. J. W.Moll, N. L.Nair, T.Helm, A. C.Potter, I.Kimchi, A.Vishwanath, and J. G.Analytis, Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2, Nature535(7611), 266 (2016)
CrossRef ADS Google scholar
AI Summary AI Mindmap
PDF(2437 KB)

Accesses

Citations

Detail

Sections
Recommended

/