Prospects for rare and forbidden hyperon decays at BESIII

Hai-Bo Li

PDF(196 KB)
PDF(196 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 121301. DOI: 10.1007/s11467-017-0691-9
PERSPECTIVE
PERSPECTIVE

Prospects for rare and forbidden hyperon decays at BESIII

Author information +
History +

Abstract

The study of hyperon decays at the Beijing Electron Spectrometer III (BESIII) is proposed to investigate the events of J/φ decay into hyperon pairs, which provide a pristine experimental environment at the Beijing Electron–Positron Collider II. About 106–108 hyperons, i.e., Ʌ, Σ,Ξand Ω, will be produced in the J/φ and φ(2S) decays with the proposed data samples at BESIII. Based on these samples, the measurement sensitivity of the branching fractions of the hyperon decays is in the range of 10-5–10-8. In addition, with the known center-of-mass energy and “tag technique”, rare decays and decays with invisible final states can be probed.

Keywords

BESIII / J/φdecay / hyperon / rare decay / FCNC / lepton flavor violation

Cite this article

Download citation ▾
Hai-Bo Li. Prospects for rare and forbidden hyperon decays at BESIII. Front. Phys., 2017, 12(5): 121301 https://doi.org/10.1007/s11467-017-0691-9

References

[1]
M.Ablikim, [BESIII Collaboration], Design and construction of the BESIII Detector, Nucl. Instrum. Meth. A614, 345(2010), arXiv: 0911.4960 [physics.insdet]
[2]
D. M.Asner,I. I.Bigi, J.Charles, J. C.Chen, H. Y.Cheng, , Charm physics, Int. J. Mod. Phys. A24(supp01), 499(2009)
CrossRef ADS Google scholar
[3]
K. A.Olive, [Particle Data Group Collaboration], Review of particle physics,Chin. Phys. C40(10), 100001(2016)
CrossRef ADS Google scholar
[4]
N.Cabibbo, Unitary symmetry and leptonic decays,Phys. Rev. Lett.10(12), 531(1963)
CrossRef ADS Google scholar
[5]
M.Kobayashiand T.Maskawa, CP-violation in the renormalizable theory of weak interaction,Prog. Theor. Phys.49(2), 652(1973)
CrossRef ADS Google scholar
[6]
E.Blucher, E.De Lucia, G.Isidori, V.Lubicz, H.Abele, V.Cirigliano, R.Flores-Mendieta, J.Flynn, C.Gatti, A.Manohar, W.Marciano, V.Pavlunin, D.Pocanic, F.Schwab, A.Sirlin, C.Tarantino, and M.Velasco, Status of the Cabibbo angle, arXiv: hep-ph/0512039 (2005)
[7]
J. C.Hardyand I. S.Towner, The measurement and interpretation of superallowed 0+→0+ nuclear β decay,J. Phys. G41(11), 114004(2014)
CrossRef ADS Google scholar
[8]
M.Antonelli, V.Cirigliano, G.Isidori, F.Mescia, M.Moulson, H.Neufeld, E.Passemar, M.Palutan, B.Sciascia, M.Sozzi, R.Wanke, and O. P.Yushchenko, An evaluation of |Vus| and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays, Eur. Phys. J. C69(3), 399(2010)
CrossRef ADS Google scholar
[9]
N.Cabibbo, E. C.Swallow, and R.Winston, Semileptonic hyperon decays, Annu. Rev. Nucl. Part. Sci.53(1), 39(2003)
CrossRef ADS Google scholar
[10]
N.Cabibbo, E. C.Swallow, and R.Winston, Semileptonic hyperon decays and Cabibbo–Kobayashi–Maskawa unitarity, Phys. Rev. Lett.92(25), 251803(2004), arXiv: hep-ph/0307214
CrossRef ADS Google scholar
[11]
S.Weinberg, V–Awas the key, J. Phys. Conf. Ser.196, 012002(2009)
CrossRef ADS Google scholar
[12]
H. M.Chang, M.González-Alonso, and J.MartinCamalich, Nonstandard semileptonic hyperon decays,Phys. Rev. Lett.114(16), 161802(2015)
CrossRef ADS Google scholar
[13]
T. N.Pham, Test of SU(3) symmetry in hyperon semileptonic decays, Phys. Rev. D87(1), 016002(2013)
CrossRef ADS Google scholar
[14]
G. S.Yangand H. C.Kim, Hyperon Semileptonic decay constants with flavor SU(3) symmetry breaking,Phys. Rev. C92, 035206(2015), arXiv: 1504.04453 [hep-ph]
[15]
A.Faessler, T.Gutsche, B. R.Holstein, M. A.Ivanov, J. G.Korner, and V. E.Lyubovitskij, Semileptonic decays of the light JP= 1/2+ ground state baryon octet, Phys. Rev. D78(9), 094005(2008)
CrossRef ADS Google scholar
[16]
B.Borasoy, Baryon axial vector currents, Phys. Rev. D59(5), 054021(1999), arXiv: hep-ph/9811411
CrossRef ADS Google scholar
[17]
L. S.Geng, J. M.Camalich, and M. J. V.Vacas, SU(3)- breaking corrections to the hyperon vector coupling f(0) in covariant baryon chiral perturbation theory, Phys. Rev. D79(9), 094022(2009)
CrossRef ADS Google scholar
[18]
T.Ledwig, J. M.Camalich, L. S.Geng, and M. J. V.Vacas, Octet-baryon axial-vector charges and SU(3)-breaking effects in the semileptonic hyperon decays, Phys. Rev. D90(5), 054502(2014)
CrossRef ADS Google scholar
[19]
M.Bourquinand J. P.Repellin, Experiments with the CERN SPS hyperon beam, Phys. Rep.114(2), 99(1984)
CrossRef ADS Google scholar
[20]
J.Bernstein, G.Feinberg, and T. D.Lee, Possible C, Tnoninvariance in the electromagnetic interaction, Phys. Rev.139(6B), B1650(1965)
CrossRef ADS Google scholar
[21]
J.Lachand P.Zenczykowski, Hyperon radiative decays, Int. J. Mod. Phys. A10(27), 3817(1995)
CrossRef ADS Google scholar
[22]
I. I.Balitsky, V. M.Braun, and A. V.Kolesnichenko, Radiative decay Σ+→pγin quantum chromodynamics, Nucl. Phys. B312(3), 509(1989)
CrossRef ADS Google scholar
[23]
M. K.Gaillard, X.Li, and S.Rudaz, Constituent gluons and a new mechanism for radiative weak decays of hyperons, Phys. Lett. B158(2), 158(1985)
CrossRef ADS Google scholar
[24]
P.Żenczykowski, Joint description of weak radiative and nonleptonic hyperon decays in broken SU(3), Phys. Rev. D73(7), 076005(2006), arXiv: hep-ph/0512122
CrossRef ADS Google scholar
[25]
B.Borasoyand B. R.Holstein, Resonances in radiative hyperon decays, Phys. Rev. D59(5), 054019(1999), arXiv: hep-ph/9902431
CrossRef ADS Google scholar
[26]
R. E.Behrends, Photon decay of hyperons, Phys. Rev. 111(6), 1691(1958)
CrossRef ADS Google scholar
[27]
Y.Hara, Nonleptonic decays of baryons and the eightfold way, Phys. Rev. Lett.12(13), 378(1964)
CrossRef ADS Google scholar
[28]
S. Y.Lo, Sum rules for nonleptonic weak gamma-decays of baryons, Nuovo Cim. 37(2), 753(1965)
CrossRef ADS Google scholar
[29]
K.Tanaka, Rare ΔQ= 0, ΔS= 1 decay modes of hyperons and K mesons, Phys. Rev.140(2B), B463(1965)
CrossRef ADS Google scholar
[30]
Gourdin, Unitary Symmetry,Amsterdam: North- Holland, 1967
[31]
J. W.Bos, D.Chang, S. C.Lee, Y. C.Lin, and H. H.Shih, Hyperon weak radiative decays in chiral perturbation theory, Phys. Rev. D54(5), 3321(1996), arXiv: hep-ph/9601299
CrossRef ADS Google scholar
[32]
B. V.Martemyanov, Electromagnetic transition form factors of Ʌ→ne+e weak dilepton decay, Phys. At. Nucl. 66(4), 737(2003) [Yad. Fiz.66, 768(2003)]
CrossRef ADS Google scholar
[33]
J. R.Batley, [NA48 Collaboration], First observation and branching fraction and decay parameter measurements of the weak radiative decay Ξ0→Ʌe+e, Phys. Lett. B650(1), 1 (2007), arXiv: hep-ex/ 0703023
CrossRef ADS Google scholar
[34]
L.Bergström, R.Safadi, and P.Singer, Phenomenology of Σ+→pl+land the structure of the weak nonleptonic Hamiltonian, Z. Phys. C37(2), 281(1988)
CrossRef ADS Google scholar
[35]
X. G.He, J.Tandean, and G.Valencia, Decay Σ+→pl+l within the standard model, Phys. Rev. D72(7), 074003(2005), arXiv: hep-ph/0506067
CrossRef ADS Google scholar
[36]
D. S.Gorbunovand V. A.Rubakov, Kaon physics with light sgoldstinos and parity conservation, Phys. Rev. D64(5), 054008(2001), arXiv: hep-ph/0012033
CrossRef ADS Google scholar
[37]
F.Dettori[LHCb Collaboration], Evidence for the rare decay Σ+→pμ+μ at LHCb,arXiv: 1611.06717 [hepex] (2016)
[38]
W. J.Marcianoand Z.Parsa, Rare kaon decays with “missing energy”, Phys. Rev. D53(1), R1(1996)
CrossRef ADS Google scholar
[39]
A. J.Buras, M.Gorbahn, U.Haisch, and U.Nierste, Rare decay K+→μν+νat the next-to-next-to-leading order in QCD, Phys. Rev. Lett.95(26), 261805(2005), arXiv: hep-ph/0508165
CrossRef ADS Google scholar
[40]
A. J.Buras, S.Uhlig, and F.Schwab, Waiting for precise measurements of K+→μν+νand KL→π0ν+ν, Rev. Mod. Phys. 80(3), 965(2008), arXiv: hep-ph/0405132
CrossRef ADS Google scholar
[41]
A. J.Buras, D.Buttazzo, and R.Knegjens, K+→μν+ν and ε’/εin simplified new physics models, J. High Energy Phys.1511, 166(2015), arXiv: 1507.08672 [hep-ph]
[42]
XuFeng, Private discussion
[43]
Y.Fukuda, [SuperKamiokande Collaboration], Measurements of the solar neutrino flux from Super- Kamiokande’s first 300 days, Phys. Rev. Lett.81(6), 1158(1998)
CrossRef ADS Google scholar
[44]
Y.Fukuda, [SuperKamiokande Collaboration], Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett.81(8), 1562(1998)
CrossRef ADS Google scholar
[45]
Y.Fukuda, [SuperKamiokande Collaboration], Measurement of the flux and zenith-angle distribution of upward throughgoing muons by Super-Kamiokande, Phys. Rev. Lett.82(13), 2644(1999)
CrossRef ADS Google scholar
[46]
Y.Fukuda, [SuperKamiokande Collaboration], Tau neutrinos favored over sterile neutrinos in atmospheric muon neutrino oscillations, Phys. Rev. Lett.85(19), 3999(2000)
CrossRef ADS Google scholar
[47]
Y.Suzuki, Solar neutrino results from Super- Kamiokande,Nucl. Phys. B Proc. Suppl.77(1–3), 35(1999)
CrossRef ADS Google scholar
[48]
S.Fukuda, [Super-Kamiokande Collaboration], Solar 8B and hep neutrino measurements from 1258 days of Super-Kamiokande data, Phys. Rev. Lett.86(25), 5651(2001)
CrossRef ADS Google scholar
[49]
Y.Ashie, [Super-Kamiokande Collaboration], Evidence for an oscillatory signature in atmospheric neutrino oscillations, Phys. Rev. Lett.93(10), 101801(2004)
CrossRef ADS Google scholar
[50]
K.Eguchi, [KamLAND Collaboration], First Results from KamLAND: Evidence for reactor antineutrino disappearance, Phys. Rev. Lett.90(2), 021802(2003)
CrossRef ADS Google scholar
[51]
T.Araki, [KamLAND Collaboration], Measurement of neutrino oscillation with KamLAND: Evidence of spectral distortion, Phys. Rev. Lett.94(8), 081801(2005)
CrossRef ADS Google scholar
[52]
Q. R.Ahmad, [SNO Collaboration], Direct evidence for neutrino flavor transformation from neutralcurrent interactions in the Sudbury neutrino observatory, Phys. Rev. Lett.89(1), 011301(2002)
CrossRef ADS Google scholar
[53]
Q. R.Ahmad, [SNO Collaboration], Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters, Phys. Rev. Lett.89(1), 011302(2002)
CrossRef ADS Google scholar
[54]
Q. R.Ahmad, [SNO Collaboration], Measurement of the total active 8B solar neutrino flux at the Sudbury neutrino observatory with enhanced neutral current sensitivity, Phys. Rev. Lett.92(18), 181301(2004)
CrossRef ADS Google scholar
[55]
B.Aharmim, [SNO Collaboration], Electron energy spectra, fluxes, and day-night asymmetries of 8B solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory, Phys. Rev. C72(5), 055502(2005)
CrossRef ADS Google scholar
[56]
F. P.An, [Daya Bay Collaboration], Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett.108(17), 171803(2012)
CrossRef ADS Google scholar
[57]
B.Pontecorvo, Inverse βprocesses and nonconservation of lepton charge,Sov. Phys. JETP7, 172(1958) [Zh. Eksp. Teor. Fiz.34, 247(1957)]
[58]
V. N.Gribovand B.Pontecorvo, Neutrino astronomy and lepton charge, Phys. Lett. B28(7), 493(1969)
CrossRef ADS Google scholar
[59]
W.Rodejohann, Neutrino-less double beta decay and particle physics, Int. J. Mod. Phys. E20(09), 1833(2011)
CrossRef ADS Google scholar
[60]
C.Barbero, G.Lopez Castro, and A.Mariano, Double beta decay of Σ hyperons, Phys. Lett. B566(1–2), 98(2003), arXiv: nucl-th/0212083
CrossRef ADS Google scholar
[61]
C.Barbero, L. F.Li, G. L.Castro, and A.Mariano, ΔL= 2 hyperon semileptonic decays, Phys. Rev. D76(11), 116008(2007)
CrossRef ADS Google scholar
[62]
C.Barbero,L. F.Li, G.López Castro, and A.Mariano, Matrix elements of four-quark operators and ΔL= 2 hyperon decays, Phys. Rev. D87(3), 036010(2013)
CrossRef ADS Google scholar
[63]
A. D.Sakharov, Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe, Pis’ma Z. Eksp. Teor. Fiz. 5, 32(1967) [JETP Lett.5, 24(1967)] [Sov. Phys. Usp.34, 392(1991)] [Usp. Fiz. Nauk161, 61(1991)]
[64]
J. C.Patiand A.Salam, Unified lepton-hadron symmetry and a gauge theory of the basic interactions, Phys. Rev. D8(4), 1240(1973)
CrossRef ADS Google scholar
[65]
H.Georgiand S. L.Glashow, Unity of all elementaryparticle forces, Phys. Rev. Lett.32(8), 438(1974)
CrossRef ADS Google scholar
[66]
R. N.Mohapatraand R. E.Marshak, Quark-lepton symmetry and B–Las the U(1) generator of the electroweak symmetry group, Phys. Lett. B91, 222(1980)
CrossRef ADS Google scholar
[67]
H.An, S. L.Chen, R. N.Mohapatra, and Y.Zhang, Leptogenesis as a common origin for matter and dark matter, J. High Energy Phys.2010(3), 124(2010)
CrossRef ADS Google scholar
[68]
M. E.McCracken, [CLAS Collaboration], Search for baryon-number and lepton-number violating decays of Ʌ hyperons using the CLAS detector at Jefferson Laboratory, Phys. Rev. D92(7), 072002(2015), arXiv: 1507.03859 [hep-ex]
[69]
X. W.Kang, H. B.Li, and G. R.Lu, Study of Λ−Λ¯ oscillation in quantum coherent ΛΛ¯- by using J/φ→ΛΛ¯- decay, Phys. Rev. D81(5), 051901(2010)
CrossRef ADS Google scholar
[70]
Z.Berezhianiand A.Vainshtein, Neutron-antineutron oscillation as a signal of CP violation, arXiv: 1506.05096 [hep-ph] (2015)
[71]
K. T.Chao, Baryon magnetic moments with confined quarks,Phys. Rev. D41(3), 920(1990)
CrossRef ADS Google scholar
[72]
X. G.Heand G.Velencia, CP violation in Ʌ→pπ beyond the standard model,Phys. Rev. D52(9), 5257(1995), arXiv: hep-ph/9508411
CrossRef ADS Google scholar
[73]
J. F.Donoghue, X. G.He, and S.Pakvasa, Hyperon decays and CP nonconservation, Phys. Rev. D34(3), 833(1986)
CrossRef ADS Google scholar
[74]
D.Chang, X. G.He, and S.Pakvasa, CP violation in hyperon decays due to left-right mixing, Phys. Rev. Lett.74(20), 3927(1995), arXiv: hep-ph/9412254
CrossRef ADS Google scholar
[75]
X. G.Heand S.Pakvasa, CP violation in hyperon decays, arXiv: hep-ph/9409236 (1994)
[76]
J.Tandean, New physics and CP violation in hyperon nonleptonic decays, Phys. Rev. D69(7), 076008(2004), arXiv: hep-ph/0311036
CrossRef ADS Google scholar
[77]
J.Tandeanand G.Valencia, CP violation in hyperon nonleptonic decays within the Standard Model, Phys. Rev. D67(5), 056001(2003), arXiv: hep-ph/0211165
CrossRef ADS Google scholar
[78]
J.Tandean, Probing CP violation in Ω→ɅK→pπKdecay, Phys. Rev. D70(7), 076005(2004), arXiv: hepph/ 0406274
[79]
J.Tandeanand G.Valencia, CP violation in nonleptonic decays, Phys. Lett. B451(3–4), 382(1999), arXiv: hep-ph/9811376
CrossRef ADS Google scholar
[80]
X. G.He, J. P.Ma, and B.McKellar, CP violation in J/φ→ɅΛ¯, Phys. Rev. D47(5), R1744(1993), arXiv: hep-ph/9211276
CrossRef ADS Google scholar
[81]
X. W.Kang, H. B.Li, G. R.Lu, and A.Datta, Study of CP violation in Λc+decay, Int. J. Mod. Phys. A26(15), 2523(2011)
CrossRef ADS Google scholar
[82]
A.Abdesselam, [Belle Collaboration], Observation of transverse Λ/Λ¯ hyperon polarization in e+e annihilation at Belle, arXiv: 1611.06648 [hep-ex] (2016)
[83]
A. E.Bondar, [Charm-Tau Factory Collaboration], Project of a super charm-tau factory at the Budker Institute of Nuclear Physics in Novosibirsk, Phys. At. Nucl.76(9), 1072(2013) [Yad. Fiz.76(9), 1132(2013)]
CrossRef ADS Google scholar
[84]
Z.Zhou, Q.Luo, L.Wang, W.Xu, and B.Zhang, “Preliminary Concept and Key Technologies of HIEPA Accelerator”, talk at the 7th International Particle Accelerator Conference (IPAC 2016), 8–13 May 2016, Busan, Korea
[85]
D.Kimura, T.Morozumi, and H.Umeeda, Analysis of Dalitz decays with intrinsic parity violating interactions in resonance chiral perturbation theory, arXiv: 1609.09235 [hep-ph] (2016)
[86]
H. R.Dong, F.Feng, and H. B.Li, Lepton number violation in D meson decay, Chin. Phys. C39(1), 013101(2015)
CrossRef ADS Google scholar
[87]
N. H.Christ, [RBC and UKQCD Collaborations], Prospects for a lattice computation of rare kaon decay amplitudes II K→πννdecays, Phys. Rev. D93(11), 114517(2016), arXiv: 1605.04442 [hep-lat]
[88]
N. H.Christ, X.Feng, A.Jttner, A.Lawson, A.Portelliand C. T.Sachrajda, Exploratory lattice QCD study of the rare kaon decay K→πνν, PoS CD15, 033(2016)
[89]
N. H.Christ, [RBC and UKQCD Collaborations], Prospects for a lattice computation of rare kaon decay amplitudes: K→πl+l decays, Phys. Rev. D92(9), 094512(2015), arXiv: 1507.03094 [hep-lat]
[90]
T. D.Leeand C. N.Yang, General partial wave analysis of the decay of a hyperon of spin 1/2, Phys. Rev.108(6), 1645(1957)
CrossRef ADS Google scholar
[91]
A.Kadeer, J. G.Körner, and U.Moosbrugger, Helicity analysis of semileptonic hyperon decays including lepton-mass effects, Eur. Phys. J. C59(1), 27 (2009), arXiv: hep-ph/0511019
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. This article is published with open access at www.springer.com/11467 and journal.hep.com.cn/fop
AI Summary AI Mindmap
PDF(196 KB)

Accesses

Citations

Detail

Sections
Recommended

/