Simulating heavy fermion physics in optical lattice: Periodic Anderson model with harmonic trapping potential

Yin Zhong, Yu Liu, Hong-Gang Luo

PDF(618 KB)
PDF(618 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 127502. DOI: 10.1007/s11467-017-0690-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Simulating heavy fermion physics in optical lattice: Periodic Anderson model with harmonic trapping potential

Author information +
History +

Abstract

The periodic Anderson model (PAM), where local electron orbitals interplay with itinerant electronic carriers, plays an essential role in our understanding of heavy fermion materials. Motivated by recent proposals for simulating the Kondo lattice model (KLM) in terms of alkaline-earth metal atoms, we take another step toward the simulation of PAM, which includes the crucial charge/valence fluctuation of local f-electrons beyond purely low-energy spin fluctuation in the KLM. To realize PAM, a transition induced by a suitable laser between the electronic excited and ground state of alkaline-earth metal atoms (1S03P0) is introduced. This leads to effective hybridization between local electrons and conduction electrons in PAM. Generally, the SU(N) version of PAM can be realized by our proposal, which gives a unique opportunity to detect large-N physics without complexity in realistic materials. In the present work, high-temperature physical features of standard [SU(2)] PAM with harmonic trapping potential are analyzed by quantum Monte Carlo and dynamic mean-field theory, where the Mott/orbital-selective Mott state was found to coexist with metallic states. Indications for near-future experiments are provided. We expect our theoretical proposal and (hopefully) forthcoming experiments will deepen our understanding of heavy fermion systems. At the same time, we hope these will trigger further studies on related Mott physics, quantum criticality, and non-trivial topology in both the inhomogeneous and nonequilibrium realms.

Keywords

optical lattice / heavy fermion / Mott transition

Cite this article

Download citation ▾
Yin Zhong, Yu Liu, Hong-Gang Luo. Simulating heavy fermion physics in optical lattice: Periodic Anderson model with harmonic trapping potential. Front. Phys., 2017, 12(5): 127502 https://doi.org/10.1007/s11467-017-0690-x

References

[1]
A. C.Hewson, The Kondo Problem to Heavy Fermions, Cambridge University Press, 1993
CrossRef ADS Google scholar
[2]
P.Coleman, Introduction to Many Body Physics, chapters 15 to 18, Cambridge University Press, 2015
CrossRef ADS Google scholar
[3]
H.Tsunetsugu, M.Sigrist, and K.Ueda, The groundstate phase diagram of the one-dimensional Kondo lattice model,Rev. Mod. Phys.69(3), 809 (1997)
CrossRef ADS Google scholar
[4]
H. V.Löhneysen, A.Rosch, M.Vojta, and P.Wölfle, Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Mod. Phys.79(3), 1015(2007)
CrossRef ADS Google scholar
[5]
C.Pfleiderer, Superconducting phases of f-electron compounds, Rev. Mod. Phys.81(4), 1551(2009)
CrossRef ADS Google scholar
[6]
J. A.Mydoshand P. M.Oppeneer, Hidden order, superconductivity, and magnetism: The unsolved case of URu2 Si2, Rev. Mod. Phys.83(4), 1301(2011)
CrossRef ADS Google scholar
[7]
Y. F.Yang, Two-fluid model for heavy electron physics, Rep. Prog. Phys.79(7), 074501(2016)
CrossRef ADS Google scholar
[8]
S.Doniach, The Kondo lattice and weak antiferromagnetism, Physica B+C91, 231(1977)
CrossRef ADS Google scholar
[9]
M.Vekić, J. W.Cannon, D. J.Scalapino, R. T.Scalettar, and R. L.Sugar, Competition between antiferromagnetic order and spin-liquid behavior in the twodimensional periodic Anderson model at half filling, Phys. Rev. Lett.74(12), 2367(1995)
CrossRef ADS Google scholar
[10]
F. F.Assaad, Quantum Monte Carlo simulations of the half-filled two-dimensional Kondo lattice model, Phys. Rev. Lett.83(4), 796(1999)
CrossRef ADS Google scholar
[11]
M.Köhl, H.Moritz, T.Stöferle, K.Günter, and T.Esslinger, Fermionic atoms in a three dimensional optical lattice: Observing Fermi surfaces, dynamics, and interactions, Phys. Rev. Lett.94(8), 080403(2005)
CrossRef ADS Google scholar
[12]
R.Jördens, N.Strohmaier, K.Günter, H.Moritz, and T.Esslinger, A Mott insulator of fermionic atoms in an optical lattice, Nature455(7210), 204(2008)
CrossRef ADS Google scholar
[13]
R. A.Hart, P. M.Duarte, T. L.Yang, X.Liu, T.Paiva, E.Khatami, R. T.Scalettar, N.Trivedi, D. A.Huse, and R. G.Hulet, Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms, Nature519(7542), 211(2015)
CrossRef ADS Google scholar
[14]
D.Greif, M. F.Parsons, A.Mazurenko, C. S.Chiu, S.Blatt, F.Huber, G.Ji, and M.Greiner, Siteresolved imaging of a fermionic Mott insulator, Science351(6276), 953(2016)
CrossRef ADS Google scholar
[15]
L. W.Cheuk, M. A.Nichols,K. R.Lawrence, M.Okan, H.Zhang, and M. W.Zwierlein, Observation of 2D fermionic Mott insulators of K40 with single-site resolution, Phys. Rev. Lett.116(23), 235301(2016)
CrossRef ADS Google scholar
[16]
M. F.Parsons, A.Mazurenko, C. S.Chiu, G.Ji, D.Greif, and M.Greiner, Site-resolved measurement of the spin-correlation function in the Hubbard model, Science353, 1253(2016)
CrossRef ADS Google scholar
[17]
M.Boll, T. A.Hilker, G.Salomon, A.Omran, I.Bloch, and C.Gross, Spin and charge resolved quantum gas microscopy of antiferromagnetic order in Hubbard chains, Science353, 1257(2016)
CrossRef ADS Google scholar
[18]
A. V.Gorshkov, M.Hermele, V.Gurarie, C.Xu, P. S.Julienne, J.Ye, P.Zoller, E.Demler, M. D.Lukin, and A. M.Rey, Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms, Nat. Phys.6(4), 289(2010)
[19]
M.Foss-Feig, M.Hermele, and A. M.Rey, Probing the Kondo lattice model with alkaline-earth-metal atoms,Phys. Rev. A81, 051603(R) (2010)
[20]
M.Foss-Feig, M.Hermele, V.Gurarie, and A. M.Rey, Heavy fermions in an optical lattice, Phys. Rev. A82(5), 053624(2010)
CrossRef ADS Google scholar
[21]
J.Silva-Valenciaand A. M. C.Souza, Entanglement of alkaline-earth-metal fermionic atoms confined in optical lattices, Phys. Rev. A85(3), 033612(2012)
CrossRef ADS Google scholar
[22]
J.Silva-Valenciaand A. M. C.Souza, Ground state of alkaline-earth fermionic atoms in one-dimensional optical lattices, Eur. Phys. J. B85, 5 (2012)
CrossRef ADS Google scholar
[23]
B. N.Jiang, J.Qian, W. L.Wang, J.Du, andY. Z.Wang,Interacting heavy fermions in a disordered optical lattice,Eur. Phys. J. D68(12), 361(2014)
CrossRef ADS Google scholar
[24]
L.Isaevand A. M.Rey, Heavy-fermion valence-bond liquids in ultracold atoms: Cooperation of the Kondo effect and geometric frustration, Phys. Rev. Lett.115(16), 165302(2015)
CrossRef ADS Google scholar
[25]
L.Isaev, J.Schachenmayer, and A. M.Rey, Spin-Orbitcoupled correlated metal phase in Kondo lattices: An implementation with alkaline-earth atoms, Phys. Rev. Lett.117(13), 135302(2016)
CrossRef ADS Google scholar
[26]
R.Zhang, D. P.Zhang, Y. T.Cheng, W.Chen, P.Zhang, and H.Zhai, Kondo effect in alkaline-earthmetal atomic gases with confinement-induced resonances, Phys. Rev. A93(4), 043601(2016)
CrossRef ADS Google scholar
[27]
R.Zhang, Y. T.Cheng, H.Zhai, and P.Zhang, Orbital Feshbach resonance in alkali-earth atoms, Phys. Rev. Lett.115(13), 135301(2015)
CrossRef ADS Google scholar
[28]
G.Pagano, M.Mancini, G.Cappellini, L.Livi, C.Sias, J.Catani, M.Inguscio, and L.Fallani, Strongly interacting gas of two-electron fermions at an orbital Feshbach resonance, Phys. Rev. Lett.115(26), 265301(2015)
CrossRef ADS Google scholar
[29]
M.Höfer, L.Riegger, F.Scazza, C.Hofrichter, D. R.Fernandes, M. M.Parish, J.Levinsen, I.Bloch, and S.Fölling, Observation of an orbital interaction-induced Feshbach resonance in Yb173, Phys. Rev. Lett.115(26), 265302(2015)
CrossRef ADS Google scholar
[30]
M.Dzero, J.Xia, V.Galitski, and P.Coleman, Topological Kondo insulators, Annu. Rev. Condens. Matter Phys.7(1), 249(2016)
CrossRef ADS Google scholar
[31]
H. Q.Yuan, F. M.Grosche, M.Deppe, C.Geibel, G.Sparn, and F.Steglich, Observation of two distinct superconducting phases in CeCu2Si2, Science302(5653), 2104(2003)
CrossRef ADS Google scholar
[32]
J. P.Rueff, J. P.Itie, M.Taguchi, C. F.Hague, J. M.Mariot, R.Delaunay, J. P.Kappler, and N.Jaouen, Probing the γ–αtransition in bulk Ce under pressure: A Direct investigation by resonant inelastic X-ray scattering, Phys. Rev. Lett.96(23), 237403(2006)
CrossRef ADS Google scholar
[33]
C.Pépin, Kondo breakdown as a selective Mott transition in the Anderson lattice, Phys. Rev. Lett.98(20), 206401(2007)
CrossRef ADS Google scholar
[34]
Y.Zhong, K.Liu, Y. Q.Wang, and H. G.Luo, Alternative Kondo breakdown mechanism: Orbital-selective orthogonal metal transition, Phys. Rev. B86(11), 115113(2012)
CrossRef ADS Google scholar
[35]
R.Blankenbecler, D. J.Scalapino, and R. L.Sugar, Monte Carlo calculations of coupled boson-fermion systems (I), Phys. Rev. D24(8), 2278(1981)
CrossRef ADS Google scholar
[36]
J. E.Hirsch,Two-dimensional Hubbard model: Numerical simulation study,Phys. Rev. B31(7), 4403(1985)
CrossRef ADS Google scholar
[37]
R. R.dos Santo, Braz. J. Phys.33, 1 (2003)
[38]
A.Georges, G.Kotliar, W.Krauth, and M. J.Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys.68(1), 13(1996)
CrossRef ADS Google scholar
[39]
M. M.Boyd, T.Zelevinsky, A. D.Ludlow, S.Blatt, T.Zanon-Willette, S. M.Foreman, and J.Ye, Nuclear spin effects in optical lattice clocks, Phys. Rev. A76(2), 022510(2007)
CrossRef ADS Google scholar
[40]
G. K.Campbell, M. M.Boyd, J. W.Thomsen, M. J.Martin, S.Blatt, M. D.Swallows, T. L.Nicholson, T.Fortier, C. W.Oates, S. A.Diddams, N. D.Lemke, P.Naidon, P.Julienne, J.Ye, and A. D.Ludlow, Probing interactions between ultracold fermions, Science324(5925), 360(2009)
CrossRef ADS Google scholar
[41]
M.Dzero, K.Sun, V.Galitski, and P.Coleman, Topological Kondo insulators, Phys. Rev. Lett.104(10), 106408(2010)
CrossRef ADS Google scholar
[42]
T.Esslinger, Fermi–Hubbard physics with atoms in an optical lattice, Annu. Rev. Condens. Matter Phys.1(1), 129(2010)
CrossRef ADS Google scholar
[43]
I.Bloch, J.Dalibard, and S.Nascimbene, Quantum simulations with ultracold quantum gases, Nat. Phys.8(4), 267(2012)
[44]
Y.Zhong, K.Liu, Y. F.Wang, Y. Q.Wang, and H. G.Luo, Half-filled Kondo lattice on the honeycomb lattice, Eur. Phys. J. B86(5), 195(2013)
CrossRef ADS Google scholar
[45]
L.De Leo, C.Kollath, A.Georges, M.Ferrero, and O.Parcollet, Trapping and cooling fermionic atoms into Mott and Néel states, Phys. Rev. Lett.101(21), 210403(2008)
CrossRef ADS Google scholar
[46]
V. W.Scarola, L.Pollet, J.Oitmaa, and M.Troyer, Discerning incompressible and compressible phases of cold atoms in optical lattices, Phys. Rev. Lett.102(13), 135302(2009)
CrossRef ADS Google scholar
[47]
S.Chiesa, C. N.Varney, M.Rigol, and R. T.Scalettar, Magnetism and pairing of two-dimensional trapped fermions, Phys. Rev. Lett.106(3), 035301(2011)
CrossRef ADS Google scholar
[48]
T.Senthil, M.Vojta, andS.Sachdev, Weak magnetism and non-Fermi liquids near heavy-fermion critical points, Phys. Rev. B69(3), 035111(2004)
CrossRef ADS Google scholar
[49]
M.Vojta, Orbital-selective Mott transitions: Heavy fermions and beyond, J. Low Temp. Phys.161(1–2), 203(2010)
CrossRef ADS Google scholar
[50]
T.Paiva, R.Scalettar, M.Randeria, and N.Trivedi, Fermions in 2D optical lattices: Temperature and entropy scales for observing antiferromagnetism and superfluidity, Phys. Rev. Lett.104(6), 066406(2010)
CrossRef ADS Google scholar
[51]
M.Jarrell, H.Akhlaghpour, and Th.Pruschke, Periodic Anderson model in infinite dimensions, Phys. Rev. Lett.70(11), 1670(1993)
CrossRef ADS Google scholar
[52]
M. J.Rozenberg, G.Kotliar, and H.Kajueter,Transfer of spectral weight in spectroscopies of correlated electron systems, Phys. Rev. B54(12), 8452(1996)
CrossRef ADS Google scholar
[53]
C. J.Wu, J. P.Hu, and S. C.Zhang, Exact SO(5) symmetry in the spin-3/2 fermionic system, Phys. Rev. Lett.91(18), 186402(2003)
CrossRef ADS Google scholar
[54]
C. J.Wu, Exotic many-body physics with large-spin Fermi gases, Physics3, 92(2010)
CrossRef ADS Google scholar
[55]
D.Wang, Y.Li, Z.Cai, Z. C.Zhou, Y.Wang, and C. J.Wu, Competing orders in the 2D half-filled SU(2N) Hubbard model through the pinning-field quantum Monte Carlo simulations, Phys. Rev. Lett.112(15), 156403(2014)
CrossRef ADS Google scholar
[56]
Z. C.Zhou, D.Wang, Z. Y.Meng, Y.Wang, and C. J.Wu, Mott insulating states and quantum phase transitions of correlated SU(2N) Dirac fermions, Phys. Rev. B93(24), 245157(2016)
CrossRef ADS Google scholar
[57]
S. M.Ramos, M. B.Fontes, E. N.Hering, M. A.Continentino, E.Baggio-Saitovich, F. D.Neto, E. M.Bittar, P. G.Pagliuso, E. D.Bauer, J. L.Sarrao, and J. D.Thompson, Superconducting quantum critical point in CeCoIn5−xSnx, Phys. Rev. Lett.105(12), 126401(2010)
CrossRef ADS Google scholar
[58]
D. J.Scalapino, A common thread: The pairing interaction for unconventional superconductors, Rev. Mod. Phys.84(4), 1383(2012)
CrossRef ADS Google scholar
[59]
P. W.Anderson, P. A.Lee, M.Randeria, T. M.Rice, N.Trivedi, and F. C.Zhang, The physics behind high-temperature superconducting cuprates: the plain vanilla version of RVB, J. Phys.: Condens. Matter16(24), R755(2004)
CrossRef ADS Google scholar
[60]
P. A.Lee, N.Nagaosa, and X. G.Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys.78(1), 17(2006)
CrossRef ADS Google scholar
[61]
Y.Zhong, L.Zhang, C.Shao, and H. G.Luo, Superfluid response in heavy fermion superconductors, Front. Phys.12(5), 127101(2017)
CrossRef ADS Google scholar
[62]
M.Nakagawa and N.Kawakami, Laser-induced Kondo effect in ultracold alkaline-earth fermions, Phys. Rev. Lett.115(16), 165303 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(618 KB)

Accesses

Citations

Detail

Sections
Recommended

/