Extended social force model with a dynamic navigation field for bidirectional pedestrian flow
Yan-Qun Jiang, Bo-Kui Chen, Bing-Hong Wang, Weng-Fai Wong, Bing-Yang Cao
Extended social force model with a dynamic navigation field for bidirectional pedestrian flow
An extended social force model with a dynamic navigation field is proposed to study bidirectional pedestrian movement. The dynamic navigation field is introduced to describe the desired direction of pedestrian motion resulting from the decision-making processes of pedestrians. The macroscopic funda-mental diagrams obtained using the extended model are validated against camera-based observations. Numerical results show that this extended model can reproduce collective phenomena in pedestrian traffic, such as dynamic multilane flow and stable separate-lane flow. Pedestrians’ path choice behavior significantly affects the probability of congestion and the number of self-organized lanes.
bidirectional pedestrian flow / social force model / dynamic navigation field / collective phenomena / complex systems
[1] |
D.Helbing and P.Molnár, Social force model for pedestrian dynamics, Phys. Rev. E51(5), 4282 (1995)
CrossRef
ADS
Google scholar
|
[2] |
V. J.Blueand J. L.Adler, Cellular automata microsimulation for modeling bidirectional pedestrian walkways, Trans. Res. Part B35(3), 293(2001)
CrossRef
ADS
Google scholar
|
[3] |
W. H. K.Lam, J. Y. S.Lee, and C. Y.Cheung, A study of the bidirectional pedestrian flow characteristics at Hong Kong signalized crosswalk facilities, Transpor. 29(2), 169(2002)
CrossRef
ADS
Google scholar
|
[4] |
R. L.Hughes, A continuum theory for the flow of pedestrians, Trans. Res. Part B36(6), 507(2002)
CrossRef
ADS
Google scholar
|
[5] |
M.Isobe, T.Adachi, and T.Nagatani, Experiment and simulation of pedestrian counter flow, Physica A336(3–4), 638(2004)
CrossRef
ADS
Google scholar
|
[6] |
T. I.Lakoba, D. J.Kaup, and N. M.Finkelstein, Modifications of the Helbing–Molnár–Farkas–Vicsek social force model for pedestrian evolution, Simulation81(5),339(2005)
CrossRef
ADS
Google scholar
|
[7] |
S. C.Wong, W. L.Leung, S. H.Chan, W. H. K.Lam, N. H. C.Yung, C. Y.Liu, and P.Zhang, bidirectional pedestrian stream model with oblique intersecting angle, J. Transp. Eng.136(3), 234(2010)
CrossRef
ADS
Google scholar
|
[8] |
D.Helbing, L.Buzna, A.Johansson, and T.Werner, Selforganized pedestrian crowd dynamics: Experi-ments, simulations, and design solutions, Transport. Sci.39(1), 1 (2005)
CrossRef
ADS
Google scholar
|
[9] |
T.Kretz, A.Grunebohm, M.Kaufman, F.Mazur, and M.Schreckenberg, Experimental study of pedestrian counter flow in a corridor, J. Stat. Mech.2006(10), P10001(2006)
|
[10] |
J.Zhang, W.Klingsch, A.Schadschneider, and A.Seyfried, Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram, J. Stat. Mech. P02002(2012)
CrossRef
ADS
Google scholar
|
[11] |
J.Zhangand A.Seyfried, Comparison of intersecting pedestrian flows based on experiments, Physica A405, 316(2014)
CrossRef
ADS
Google scholar
|
[12] |
M.Saberi, K.Aghabayk, and A.Sobhani, Spatial fluctuations of pedestrian velocities in bidirectional streams: exploring the e ects of selforganization, Physica A434, 120(2015)
CrossRef
ADS
Google scholar
|
[13] |
D.Helbingand T.Vicsek, Optimal selforganization, New J. Phys.13, 1 (1999)
|
[14] |
T.Morbiato, R.Vitaliani, and A.Saetta, Numerical analysis of a synchronization phenomenon: Pedestrian-structure interaction, Computers & Structures89(17–18), 1649(2011)
CrossRef
ADS
Google scholar
|
[15] |
C. Q.Wang, A.Pumir, N. B.Garnier, and Z. H.Liu, Explosive synchronization enhances selectivity: Example of the cochlea, Front. Phys.12(5), 128901(2017)
CrossRef
ADS
Google scholar
|
[16] |
S. F.Ma, H. J.Bi, Y.Zou, Z. H.Liu, and S. G.Guan, Shuttle-run synchronization in mobile ad hoc networks, Front. Phys.10(3), 100505(2015)
CrossRef
ADS
Google scholar
|
[17] |
F.Zanlungo, T.Ikeda, and T.Kanda, Social force model with explicit collision prediction, Europhys. Lett.93(6), 68005(2011)
CrossRef
ADS
Google scholar
|
[18] |
G.Flötterödand G.Lámmel, bidirectional pedestrian fundamental diagram, Trans. Res. Part B71, 194(2015)
CrossRef
ADS
Google scholar
|
[19] |
T.Xiong, P.Zhang, S. C.Wong, C. W.Shu, and M. P.Zhang, A macroscopic approach to the lane forma-tion phenomenon in pedestrian counterflow, Chin. Phys. Lett.28(10), 108901(2011)
CrossRef
ADS
Google scholar
|
[20] |
Y. Q.Jiang, S. C.Wong, P.Zhang, R. X.Liu, Y. L.Duan, and K.Choi, Numerical simulation of a con-tinuum model for bidirectional pedestrian flow, Appl. Math. Comput.218, 6135(2012)
|
[21] |
S. P.Hoogendoorn, F. L. M.van Wageningen-Kessels, W.Daamen, and D. C.Duives, Continuum modelling of pedestrian flows: From microscopic principles to self-organised macroscopic phenomena, Physica A416, 684(2014)
CrossRef
ADS
Google scholar
|
[22] |
Y. Q.Jiang, S. G.Zhou, and F. B.Tian, A higher-order macroscopic model forbi-directionpedestrian flow, Physica A425, 69(2015)
CrossRef
ADS
Google scholar
|
[23] |
Y. Q.Jiang, S. G.Zhou, and F. B.Tian, Macroscopic pedestrian flow model with degrading spatial informa-tion, J. Comput. Sci.10, 36(2015)
CrossRef
ADS
Google scholar
|
[24] |
N.Bellomoand C.Dogbé, On the modeling of traffic and crowds: A survey of models, speculations, and per-spectives, SIAM Rev.53(3), 409(2011)
CrossRef
ADS
Google scholar
|
[25] |
N.Bellomoand L.Gibelli, Toward a mathematical the-ory of behavioral social dynamics for pedestrian crowds, Math. Models Methods Appl. Sci.25(13), 2417(2015)
CrossRef
ADS
Google scholar
|
[26] |
D.Helbing,I.Farkas, and T.Vicsek, Simulating dy-namical features of escape panic, Nature407(6803), 487(2000)
CrossRef
ADS
Google scholar
|
[27] |
X. X.Yang, W.Daamen, S. P.Hoogendoorn, Y.Chen, and H. R.Dong, Breakdown phenomenon study in the bidirectional pedestrian flow, Transpor. Res. Proc.2, 456(2014)
CrossRef
ADS
Google scholar
|
[28] |
R. Y.Guo, Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck, Physica A415, 428(2014)
CrossRef
ADS
Google scholar
|
[29] |
L.Hou, J. G.Liu, X.Pan, and B. H.Wang, A social force evacuation model with the leadership e ect, Physica A400, 93(2014)
CrossRef
ADS
Google scholar
|
[30] |
T.Korecki, D.Palka, and J.Was, Adaptation of social force model for simulation of downhill skiing,J. Com-put. Sci.16, 29
CrossRef
ADS
Google scholar
|
[31] |
W. G.Weng, T.Chen, H. Y.Yuan, and W. C.Fan, Cellular automaton simulation of pedestrian counter flow with di erent walk velocities, Phys. Rev. E74(3), 036102(2006)
CrossRef
ADS
Google scholar
|
[32] |
X. X.Jian, S. C.Wong, P.Zhang, K.Choi, H.Li, and X. N.Zhang, Perceived cost potential field cellular au-tomata model with an aggregated force field for pedes-trian dynamics, Trans. Res. Part C.42, 200(2014)
|
[33] |
Y.Tajima, K.Takimoto, and T.Nagatani, Pattern for-mation and jamming transition in pedestrian counter flow, Physica A313(3–4), 709(2002)
CrossRef
ADS
Google scholar
|
[34] |
R.Nagaiand T.Nagatani, Jamming transition in counter flow of slender particles on square lattice, Physica A366, 503(2006)
CrossRef
ADS
Google scholar
|
[35] |
L. B.Fu, W. G.Song, W.Lv, X. D.Liu, and S. M.Lo, Multi-grid simulation of counter flow pedestrian dy-namics with emotion propagation, Simul. Model. Pract. Theory60, 1 (2016)
CrossRef
ADS
Google scholar
|
[36] |
D. R.Parisiand C. O.Dorso, Morphological and dynamical aspects of the room evacuation process, Physica A385(1), 343(2007)
CrossRef
ADS
Google scholar
|
[37] |
D. R.Parisi, M.Gilman, and H.Moldovan, A modification of the social force model can reproduce experimental data of pedestrian flows in normal conditions, Physica A388(17), 3600(2009)
CrossRef
ADS
Google scholar
|
[38] |
J.Kwak, H. H.Jo, T.Luttinen, and I.Kosonen, Collective dynamics of pedestrians interacting with attractions, Phys. Rev. E88(6), 062810(2013)
CrossRef
ADS
Google scholar
|
[39] |
T.Kretz, A.Grosse, S.Hengst, L.Kautzsch, A.Pohlmann, and P.Vortisch, Quickest paths in simu-lations of pedestrians, Advances in Complex Systems14(5), 733(2011)
CrossRef
ADS
Google scholar
|
[40] |
I.Karamouzas, B.Skinner, and S. J.Guy, Universal power law governing pedestrian interactions, Phys. Rev. Lett.113(23), 238701(2014)
CrossRef
ADS
Google scholar
|
[41] |
J.Wahle, A. L. C.Bazzan, F.Klügl, and M.Schreck-enberg, Decision dynamics in a traffic scenario, Physica A287(3–4), 669(2000)
CrossRef
ADS
Google scholar
|
[42] |
W. X.Wang, B. H.Wang, W. C.Zheng, C. Y.Yin, and T.Zhou, Advanced information feedback in intelligent traffic systems, Phys. Rev. E72(6), 066702(2005)
CrossRef
ADS
Google scholar
|
[43] |
B. K.Chen, X. Y.Sun, H.Wei, C. F.Dong, and B. H.Wang, Piecewise function feedback strategy in intelligent traffic systems with a speed limit bottleneck, IntJ. Mod. Phys. C22(08), 849(2011)
CrossRef
ADS
Google scholar
|
[44] |
B. K.Chen, C. F.Dong, Y. K.Liu, W.Tong, W. Y.Zhang, J.Liu, and B. H.Wang, Real-time informa-tion feedback based on a sharp decay weighted function, Comput. Phys. Commun. 183(10), 2081(2012)
CrossRef
ADS
Google scholar
|
[45] |
B. K.Chen, W.Tong, W. Y.Zhang, X. Y.Sun, and B. H.Wang, Flux information feedback strategy in intelli-gent traffic systems, Europhys. Lett. 97(1), 14001(2012)
CrossRef
ADS
Google scholar
|
[46] |
B. K.Chen, Y. B.Xie, W.Tong, C. F.Dong, D. M.Shi, and B. H.Wang, A comprehensive study of advanced information feedbacks in real-time intelligent traffic systems, Physica A391(8), 2730(2012)
CrossRef
ADS
Google scholar
|
[47] |
B. K.Chen, D. Z. W.Wang, Y. C.Gao, K.Zhang, L.X.Miao, and B. H.Wang, Effects of traffic lights for Manhattan-like urban traffic network in intelligent transportation systems, Transportmetrica B,
|
[48] |
Y. T.Zhang, H. K.Zhao, and J.Qian, High order fast sweeping methods for static Hamilton Jacobi equations, J.Sci. Comput.29(1), 25(2006)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |